三维矢量场的熵

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fei Li, Wanlou Wu
{"title":"三维矢量场的熵","authors":"Fei Li, Wanlou Wu","doi":"10.1007/s10884-024-10383-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we show that for any <span>\\(C^1\\)</span> three-dimensional vector fields with positive topological entropy, the topological entropy can be approximated by horseshoes. Precisely, for any <span>\\(C^1\\)</span> three-dimensional vector field <i>X</i> with positive topological entropy, there exists a vector field <i>Y</i> arbitrarily close (in the <span>\\(C^1\\)</span> topology) to <i>X</i> exhibiting a horseshoe <span>\\(\\Lambda \\)</span> such that the topological entropy of <i>Y</i> restricted on <span>\\(\\Lambda \\)</span> can arbitrarily approximate the topological entropy of <i>X</i>. This extends a classical result (Katok in Inst Hautes Études Sci Publ Math 51:137–173, 1980) of Katok for <span>\\(C^{1+\\alpha }(\\alpha &gt;0)\\)</span> surface diffeomorphisms and a result (Wu and Liu in Proc Am Math Soc 148(1):223–233, 2020) for <span>\\(C^1\\)</span> surface diffeomorphisms.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy for Three-dimensional Vector Fields\",\"authors\":\"Fei Li, Wanlou Wu\",\"doi\":\"10.1007/s10884-024-10383-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we show that for any <span>\\\\(C^1\\\\)</span> three-dimensional vector fields with positive topological entropy, the topological entropy can be approximated by horseshoes. Precisely, for any <span>\\\\(C^1\\\\)</span> three-dimensional vector field <i>X</i> with positive topological entropy, there exists a vector field <i>Y</i> arbitrarily close (in the <span>\\\\(C^1\\\\)</span> topology) to <i>X</i> exhibiting a horseshoe <span>\\\\(\\\\Lambda \\\\)</span> such that the topological entropy of <i>Y</i> restricted on <span>\\\\(\\\\Lambda \\\\)</span> can arbitrarily approximate the topological entropy of <i>X</i>. This extends a classical result (Katok in Inst Hautes Études Sci Publ Math 51:137–173, 1980) of Katok for <span>\\\\(C^{1+\\\\alpha }(\\\\alpha &gt;0)\\\\)</span> surface diffeomorphisms and a result (Wu and Liu in Proc Am Math Soc 148(1):223–233, 2020) for <span>\\\\(C^1\\\\)</span> surface diffeomorphisms.\\n</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-024-10383-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-024-10383-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了对于任何具有正拓扑熵的\(C^1\)三维向量场,拓扑熵都可以用马蹄铁来近似。准确地说,对于任何具有正拓扑熵的\(C^1\)三维向量场X,存在一个与X任意接近(在\(C^1\)拓扑中)的向量场Y,它展示了一个马蹄形\(\Lambda \),使得Y限制在\(\Lambda \)上的拓扑熵可以任意逼近X的拓扑熵。这扩展了卡托克关于\(C^{1+\alpha }(\alpha >0)\) 曲面差分的经典结果(Katok in Inst Hautes Études Sci Publ Math 51:137-173, 1980)和关于\(C^1\) 曲面差分的结果(Wu and Liu in Proc Am Math Soc 148(1):223-233, 2020)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy for Three-dimensional Vector Fields

In this paper, we show that for any \(C^1\) three-dimensional vector fields with positive topological entropy, the topological entropy can be approximated by horseshoes. Precisely, for any \(C^1\) three-dimensional vector field X with positive topological entropy, there exists a vector field Y arbitrarily close (in the \(C^1\) topology) to X exhibiting a horseshoe \(\Lambda \) such that the topological entropy of Y restricted on \(\Lambda \) can arbitrarily approximate the topological entropy of X. This extends a classical result (Katok in Inst Hautes Études Sci Publ Math 51:137–173, 1980) of Katok for \(C^{1+\alpha }(\alpha >0)\) surface diffeomorphisms and a result (Wu and Liu in Proc Am Math Soc 148(1):223–233, 2020) for \(C^1\) surface diffeomorphisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信