范德瓦尔斯铁磁体 Fe5-xGeTe2 (x ∼ 0.16) 中与热历史有关的特性

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
APL Materials Pub Date : 2024-08-01 DOI:10.1063/5.0215121
Ramesh Lalmani Yadav, Pallab Bag, Chien-Chih Lai, Yung-Kang Kuo, Chia-Nung Kuo, Chin-Shan Lue
{"title":"范德瓦尔斯铁磁体 Fe5-xGeTe2 (x ∼ 0.16) 中与热历史有关的特性","authors":"Ramesh Lalmani Yadav, Pallab Bag, Chien-Chih Lai, Yung-Kang Kuo, Chia-Nung Kuo, Chin-Shan Lue","doi":"10.1063/5.0215121","DOIUrl":null,"url":null,"abstract":"We investigated the thermal-history dependence of physical properties in a quenched Fe5−xGeTe2 (x ∼ 0.16) single crystal by measuring magnetization (M), electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) as a function of temperature (T). The results reveal anomalies in these physical quantities around various transition points: ferromagnetic (TC ∼ 310–300 K), helimagnetic (TH ∼ 275 K), charge ordering (TCO ∼ 165 K), spin-reorientation (T* ∼ 100–120 K), and a Fermi-liquid (FL) phase below TL ∼ 35 K. Using power-law fitting, the M(T) analysis near TC shows that Fe moments become primarily itinerant after thermal cycling. The ρ(T) results indicate inherent residual stresses in the crystal that alter with thermal cycling, influencing ferromagnetic domain formations within grain boundaries. The system exhibits a strongly correlated FL behavior at low temperatures, which ceases above TL due to spin fluctuations. In the T-range of T* ≤ T ≤ TCO, ρ(T) and S(T) analyses suggest significant electronic band structure modifications with multiband effects. The κ(T) data indicate phonon-dominated heat transport in the crystal, with a phonon behavior influenced by inherent lattice strains following initial thermal cycles, as evidenced by the decreased phonon peak height at low temperatures. In addition, there is evidence of phonon localization and electron–phonon coupling at higher temperatures.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal history-dependent characteristics in van der Waals ferromagnet Fe5−xGeTe2 (x ∼ 0.16)\",\"authors\":\"Ramesh Lalmani Yadav, Pallab Bag, Chien-Chih Lai, Yung-Kang Kuo, Chia-Nung Kuo, Chin-Shan Lue\",\"doi\":\"10.1063/5.0215121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated the thermal-history dependence of physical properties in a quenched Fe5−xGeTe2 (x ∼ 0.16) single crystal by measuring magnetization (M), electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) as a function of temperature (T). The results reveal anomalies in these physical quantities around various transition points: ferromagnetic (TC ∼ 310–300 K), helimagnetic (TH ∼ 275 K), charge ordering (TCO ∼ 165 K), spin-reorientation (T* ∼ 100–120 K), and a Fermi-liquid (FL) phase below TL ∼ 35 K. Using power-law fitting, the M(T) analysis near TC shows that Fe moments become primarily itinerant after thermal cycling. The ρ(T) results indicate inherent residual stresses in the crystal that alter with thermal cycling, influencing ferromagnetic domain formations within grain boundaries. The system exhibits a strongly correlated FL behavior at low temperatures, which ceases above TL due to spin fluctuations. In the T-range of T* ≤ T ≤ TCO, ρ(T) and S(T) analyses suggest significant electronic band structure modifications with multiband effects. The κ(T) data indicate phonon-dominated heat transport in the crystal, with a phonon behavior influenced by inherent lattice strains following initial thermal cycles, as evidenced by the decreased phonon peak height at low temperatures. In addition, there is evidence of phonon localization and electron–phonon coupling at higher temperatures.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0215121\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0215121","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们通过测量磁化率 (M)、电阻率 (ρ)、塞贝克系数 (S) 和热导率 (κ)与温度 (T) 的函数关系,研究了淬火 Fe5-xGeTe2 (x ∼ 0.16) 单晶体物理性质的热历史依赖性。结果显示了这些物理量在不同转变点附近的异常现象:铁磁性(TC ∼ 310-300 K)、日磁性(TH ∼ 275 K)、电荷有序化(TCO ∼ 165 K)、自旋定向(T* ∼ 100-120 K)以及低于 TL ∼ 35 K 的费米液体(FL)相。利用幂律拟合,对 TC 附近的 M(T) 分析表明,热循环后铁矩主要是流动的。ρ(T)结果表明,晶体中固有的残余应力会随着热循环而改变,从而影响晶界内铁磁畴的形成。该系统在低温下表现出强烈相关的 FL 行为,在 TL 以上由于自旋波动而停止。在 T* ≤ T ≤ TCO 的 T 范围内,ρ(T) 和 S(T) 分析表明电子能带结构发生了显著变化,并具有多带效应。κ(T)数据表明晶体中的热传输以声子为主,声子行为受到初始热循环后固有晶格应变的影响,低温时声子峰高降低就是证明。此外,有证据表明在较高温度下存在声子定位和电子-声子耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal history-dependent characteristics in van der Waals ferromagnet Fe5−xGeTe2 (x ∼ 0.16)
We investigated the thermal-history dependence of physical properties in a quenched Fe5−xGeTe2 (x ∼ 0.16) single crystal by measuring magnetization (M), electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) as a function of temperature (T). The results reveal anomalies in these physical quantities around various transition points: ferromagnetic (TC ∼ 310–300 K), helimagnetic (TH ∼ 275 K), charge ordering (TCO ∼ 165 K), spin-reorientation (T* ∼ 100–120 K), and a Fermi-liquid (FL) phase below TL ∼ 35 K. Using power-law fitting, the M(T) analysis near TC shows that Fe moments become primarily itinerant after thermal cycling. The ρ(T) results indicate inherent residual stresses in the crystal that alter with thermal cycling, influencing ferromagnetic domain formations within grain boundaries. The system exhibits a strongly correlated FL behavior at low temperatures, which ceases above TL due to spin fluctuations. In the T-range of T* ≤ T ≤ TCO, ρ(T) and S(T) analyses suggest significant electronic band structure modifications with multiband effects. The κ(T) data indicate phonon-dominated heat transport in the crystal, with a phonon behavior influenced by inherent lattice strains following initial thermal cycles, as evidenced by the decreased phonon peak height at low temperatures. In addition, there is evidence of phonon localization and electron–phonon coupling at higher temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信