Samar G. Thabet , Fatmah Ahmed Safhi , Andreas Börner , Ahmad M. Alqudah
{"title":"干旱胁迫下小麦跨代胁迫记忆的遗传关联","authors":"Samar G. Thabet , Fatmah Ahmed Safhi , Andreas Börner , Ahmad M. Alqudah","doi":"10.1016/j.envexpbot.2024.105920","DOIUrl":null,"url":null,"abstract":"<div><p>Transgenerational stress memory (TSM) in plants is a fascinating area of research, particularly when it comes to understanding how plants respond to drought stress. Therefore, our study explored the genetic architecture/causative alleles controlling transgenerational drought stress memoryin a diverse collection of 111 wheat accessions that enhanced seed germination parameters and antioxidant components in response to drought stress tolerance using a Genome-Wide Association Study (GWAS). This experiment was performed in two distinct stages. In the first stage, all wheat accessions were exposed to control and drought conditions following the primed acclimation technique. Two different groups of genotypes were recovered at this stage: the seeds of stressed plants (SP) and those of non-stressed plants (NP) and evaluated under drought treatment. Our study revealed a highly significant increase in root and shoot lengths by 42 % and 56 % for the seeds of stressed plants Similarly, a highly significant increase in superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase was detected for stressed plants by 55 %, 43 %, 44 %, and 63 % when compared to those of non-stressed wheatplants. Using GWAS mapping, a significant marker (Kukri_c53629_239) associated with APX_SP, DW_SP, and SOD_SP on chromosome 2 H was located inside the gene <em>TraesCS2B02G192700</em> candidate is annotated as protein kinase activity that triggering various protective mechanisms, such as antioxidative enzymes under drought stress. Altogether, TSM is a cornerstone in the genetic research of drought stress tolerance, offering invaluable insights that can drive the development of drought-resilient crop varieties.</p></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic associations of transgenerational stress memory in wheat under drought stress\",\"authors\":\"Samar G. Thabet , Fatmah Ahmed Safhi , Andreas Börner , Ahmad M. Alqudah\",\"doi\":\"10.1016/j.envexpbot.2024.105920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transgenerational stress memory (TSM) in plants is a fascinating area of research, particularly when it comes to understanding how plants respond to drought stress. Therefore, our study explored the genetic architecture/causative alleles controlling transgenerational drought stress memoryin a diverse collection of 111 wheat accessions that enhanced seed germination parameters and antioxidant components in response to drought stress tolerance using a Genome-Wide Association Study (GWAS). This experiment was performed in two distinct stages. In the first stage, all wheat accessions were exposed to control and drought conditions following the primed acclimation technique. Two different groups of genotypes were recovered at this stage: the seeds of stressed plants (SP) and those of non-stressed plants (NP) and evaluated under drought treatment. Our study revealed a highly significant increase in root and shoot lengths by 42 % and 56 % for the seeds of stressed plants Similarly, a highly significant increase in superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase was detected for stressed plants by 55 %, 43 %, 44 %, and 63 % when compared to those of non-stressed wheatplants. Using GWAS mapping, a significant marker (Kukri_c53629_239) associated with APX_SP, DW_SP, and SOD_SP on chromosome 2 H was located inside the gene <em>TraesCS2B02G192700</em> candidate is annotated as protein kinase activity that triggering various protective mechanisms, such as antioxidative enzymes under drought stress. Altogether, TSM is a cornerstone in the genetic research of drought stress tolerance, offering invaluable insights that can drive the development of drought-resilient crop varieties.</p></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847224002788\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224002788","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Genetic associations of transgenerational stress memory in wheat under drought stress
Transgenerational stress memory (TSM) in plants is a fascinating area of research, particularly when it comes to understanding how plants respond to drought stress. Therefore, our study explored the genetic architecture/causative alleles controlling transgenerational drought stress memoryin a diverse collection of 111 wheat accessions that enhanced seed germination parameters and antioxidant components in response to drought stress tolerance using a Genome-Wide Association Study (GWAS). This experiment was performed in two distinct stages. In the first stage, all wheat accessions were exposed to control and drought conditions following the primed acclimation technique. Two different groups of genotypes were recovered at this stage: the seeds of stressed plants (SP) and those of non-stressed plants (NP) and evaluated under drought treatment. Our study revealed a highly significant increase in root and shoot lengths by 42 % and 56 % for the seeds of stressed plants Similarly, a highly significant increase in superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase was detected for stressed plants by 55 %, 43 %, 44 %, and 63 % when compared to those of non-stressed wheatplants. Using GWAS mapping, a significant marker (Kukri_c53629_239) associated with APX_SP, DW_SP, and SOD_SP on chromosome 2 H was located inside the gene TraesCS2B02G192700 candidate is annotated as protein kinase activity that triggering various protective mechanisms, such as antioxidative enzymes under drought stress. Altogether, TSM is a cornerstone in the genetic research of drought stress tolerance, offering invaluable insights that can drive the development of drought-resilient crop varieties.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.