{"title":"利用片上可配置电流转向测温 DAC 改进线性度的过程变化感知内存计算","authors":"Prasanna Kumar Saragada;Bishnu Prasad Das","doi":"10.1109/TCSI.2024.3422883","DOIUrl":null,"url":null,"abstract":"The in-memory computation (IMC) is a potential technique to improve the speed and energy efficiency of data-intensive designs. However, the scalability of IMC to large systems is hindered by the non-linearities of analog multiply-and-accumulate (MAC) operations and process variation, which impacts the precision of high bit-width MAC operations. In this paper, we present an IMC architecture that is capable of performing multi-bit MAC operations with improved speed, linearity, and computational accuracy. To improve the speed/linearity of the IMC-MAC operations, the image and weight data are applied by using the pulse amplitude modulation (PAM) and thermometric techniques, respectively. Although the PAM technique improves the speed of the IMC-MAC operations, it has linearity issues that need to be addressed. Based on the detailed linearity analysis of the IMC-MAC circuit, we proposed two approaches to improve the linearity and the signal margin (SM) of the IMC architecture. The proposed configurable current steering thermometric digital-to-analog converter (CST-DAC) array is employed to provide the PAM signals with various dynamic ranges and non-linear gaps that are required to improve the linearity/SM. The proposed combined PAM and thermometric IMC (PT-IMC) architecture is designed and fabricated in the TSMC 180-nm CMOS process. The post-silicon calibration of the design point mitigates the process-variation issues and provides the maximum SM (close to the simulation results). Furthermore, the proposed PT-IMC architecture performs MNIST/CIFAR-10 data set classification with an accuracy of 98%/88%. In addition, the PT-IMC architecture achieves a peak throughput of 12.41 GOPS, a normalized energy efficiency of 30.64 TOPS/W, a normalized figure-of-merit (FOM) of 3039, a loss in the SM of 8.3% with respect to the ideal SM, and a computational error of 0.41%.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process-Variation-Aware In-Memory Computation With Improved Linearity Using On-Chip Configurable Current-Steering Thermometric DAC\",\"authors\":\"Prasanna Kumar Saragada;Bishnu Prasad Das\",\"doi\":\"10.1109/TCSI.2024.3422883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The in-memory computation (IMC) is a potential technique to improve the speed and energy efficiency of data-intensive designs. However, the scalability of IMC to large systems is hindered by the non-linearities of analog multiply-and-accumulate (MAC) operations and process variation, which impacts the precision of high bit-width MAC operations. In this paper, we present an IMC architecture that is capable of performing multi-bit MAC operations with improved speed, linearity, and computational accuracy. To improve the speed/linearity of the IMC-MAC operations, the image and weight data are applied by using the pulse amplitude modulation (PAM) and thermometric techniques, respectively. Although the PAM technique improves the speed of the IMC-MAC operations, it has linearity issues that need to be addressed. Based on the detailed linearity analysis of the IMC-MAC circuit, we proposed two approaches to improve the linearity and the signal margin (SM) of the IMC architecture. The proposed configurable current steering thermometric digital-to-analog converter (CST-DAC) array is employed to provide the PAM signals with various dynamic ranges and non-linear gaps that are required to improve the linearity/SM. The proposed combined PAM and thermometric IMC (PT-IMC) architecture is designed and fabricated in the TSMC 180-nm CMOS process. The post-silicon calibration of the design point mitigates the process-variation issues and provides the maximum SM (close to the simulation results). Furthermore, the proposed PT-IMC architecture performs MNIST/CIFAR-10 data set classification with an accuracy of 98%/88%. In addition, the PT-IMC architecture achieves a peak throughput of 12.41 GOPS, a normalized energy efficiency of 30.64 TOPS/W, a normalized figure-of-merit (FOM) of 3039, a loss in the SM of 8.3% with respect to the ideal SM, and a computational error of 0.41%.\",\"PeriodicalId\":13039,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10621041/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10621041/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Process-Variation-Aware In-Memory Computation With Improved Linearity Using On-Chip Configurable Current-Steering Thermometric DAC
The in-memory computation (IMC) is a potential technique to improve the speed and energy efficiency of data-intensive designs. However, the scalability of IMC to large systems is hindered by the non-linearities of analog multiply-and-accumulate (MAC) operations and process variation, which impacts the precision of high bit-width MAC operations. In this paper, we present an IMC architecture that is capable of performing multi-bit MAC operations with improved speed, linearity, and computational accuracy. To improve the speed/linearity of the IMC-MAC operations, the image and weight data are applied by using the pulse amplitude modulation (PAM) and thermometric techniques, respectively. Although the PAM technique improves the speed of the IMC-MAC operations, it has linearity issues that need to be addressed. Based on the detailed linearity analysis of the IMC-MAC circuit, we proposed two approaches to improve the linearity and the signal margin (SM) of the IMC architecture. The proposed configurable current steering thermometric digital-to-analog converter (CST-DAC) array is employed to provide the PAM signals with various dynamic ranges and non-linear gaps that are required to improve the linearity/SM. The proposed combined PAM and thermometric IMC (PT-IMC) architecture is designed and fabricated in the TSMC 180-nm CMOS process. The post-silicon calibration of the design point mitigates the process-variation issues and provides the maximum SM (close to the simulation results). Furthermore, the proposed PT-IMC architecture performs MNIST/CIFAR-10 data set classification with an accuracy of 98%/88%. In addition, the PT-IMC architecture achieves a peak throughput of 12.41 GOPS, a normalized energy efficiency of 30.64 TOPS/W, a normalized figure-of-merit (FOM) of 3039, a loss in the SM of 8.3% with respect to the ideal SM, and a computational error of 0.41%.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.