用于评估图像分割的加权相交联合(wIoU)

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yeong-Jun Cho
{"title":"用于评估图像分割的加权相交联合(wIoU)","authors":"Yeong-Jun Cho","doi":"10.1016/j.patrec.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, many semantic segmentation methods have been proposed to predict label of pixels in the scene. In general, we measure area prediction errors or boundary prediction errors for comparing methods. However, there is no intuitive evaluation metric that evaluates both aspects. In this work, we propose a new evaluation measure called weighted Intersection over Union (wIoU) for semantic segmentation. First, it builds a weight map generated from a boundary distance map, allowing weighted evaluation for each pixel based on a boundary importance factor. The proposed wIoU can evaluate both contour and region by setting a boundary importance factor. We validated the effectiveness of wIoU on a dataset of 33 scenes and demonstrated its flexibility. Using the proposed metric, we expect more flexible and intuitive evaluation in semantic segmentation field are possible.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 101-107"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Intersection over Union (wIoU) for evaluating image segmentation\",\"authors\":\"Yeong-Jun Cho\",\"doi\":\"10.1016/j.patrec.2024.07.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, many semantic segmentation methods have been proposed to predict label of pixels in the scene. In general, we measure area prediction errors or boundary prediction errors for comparing methods. However, there is no intuitive evaluation metric that evaluates both aspects. In this work, we propose a new evaluation measure called weighted Intersection over Union (wIoU) for semantic segmentation. First, it builds a weight map generated from a boundary distance map, allowing weighted evaluation for each pixel based on a boundary importance factor. The proposed wIoU can evaluate both contour and region by setting a boundary importance factor. We validated the effectiveness of wIoU on a dataset of 33 scenes and demonstrated its flexibility. Using the proposed metric, we expect more flexible and intuitive evaluation in semantic segmentation field are possible.</p></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"185 \",\"pages\":\"Pages 101-107\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002149\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002149","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们提出了许多语义分割方法来预测场景中像素的标签。一般来说,我们会测量区域预测误差或边界预测误差来比较各种方法。然而,目前还没有一种直观的评估指标能同时评估这两个方面。在这项工作中,我们为语义分割提出了一种新的评估指标,称为加权交叉联合(wIoU)。首先,它建立了一个由边界距离图生成的权重图,允许根据边界重要性因子对每个像素进行加权评估。提议的 wIoU 可以通过设置边界重要性因子来评估轮廓和区域。我们在 33 个场景的数据集上验证了 wIoU 的有效性,并证明了它的灵活性。通过使用所提出的度量方法,我们预计在语义分割领域可以进行更灵活、更直观的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted Intersection over Union (wIoU) for evaluating image segmentation

In recent years, many semantic segmentation methods have been proposed to predict label of pixels in the scene. In general, we measure area prediction errors or boundary prediction errors for comparing methods. However, there is no intuitive evaluation metric that evaluates both aspects. In this work, we propose a new evaluation measure called weighted Intersection over Union (wIoU) for semantic segmentation. First, it builds a weight map generated from a boundary distance map, allowing weighted evaluation for each pixel based on a boundary importance factor. The proposed wIoU can evaluate both contour and region by setting a boundary importance factor. We validated the effectiveness of wIoU on a dataset of 33 scenes and demonstrated its flexibility. Using the proposed metric, we expect more flexible and intuitive evaluation in semantic segmentation field are possible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信