Songtong Zhang, Xiayu Zhu, Zehua Wang, Li Wang, Zhiguo Zhang, Yan Liu, Jingyi Qiu, Hao Zhang, Xiangming He
{"title":"提高锂离子电池的可靠性对减少电动汽车现场安全事故的意义","authors":"Songtong Zhang, Xiayu Zhu, Zehua Wang, Li Wang, Zhiguo Zhang, Yan Liu, Jingyi Qiu, Hao Zhang, Xiangming He","doi":"10.1002/batt.202400355","DOIUrl":null,"url":null,"abstract":"In recent years, the frequency of incidents related to the safety of electric vehicles (EVs) due to lithium‐ion batteries has seen a troubling uptick, leading to a heightened focus on the safety of lithium‐ion batteries (LIBs) as a critical area of research. After thorough analysis, this study contends that the root cause of the majority of safety incidents involving LIBs in the field is predominantly linked to reliability issues within the battery products themselves. This argument offers a more targeted perspective than a broad discussion on the safety concerns of LIBs. Reliability, in this context, is defined as the likelihood that a product will execute its intended function without error over a defined period and under specific conditions. The paper delineates the reasons why current safety testing standards are unable to entirely prevent LIB safety incidents, scrutinizes the multifaceted causes and testing methodologies associated with LIB unpredictive thermal runaways from reliability perspective, and aims to reduce the probability of battery field failure and electric vehicle fire incidents, with an emphasis on mtigating unpredictive fire accidents. This study advocates for a more aggressive research effort into the reliability of LIBs, parallel to the vigorous advancement of safety technologies for these batteries.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Significance of Enhancing the Reliability of Lithium‐Ion Batteries in Reducing Electric Vehicle Field Safety Accidents\",\"authors\":\"Songtong Zhang, Xiayu Zhu, Zehua Wang, Li Wang, Zhiguo Zhang, Yan Liu, Jingyi Qiu, Hao Zhang, Xiangming He\",\"doi\":\"10.1002/batt.202400355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the frequency of incidents related to the safety of electric vehicles (EVs) due to lithium‐ion batteries has seen a troubling uptick, leading to a heightened focus on the safety of lithium‐ion batteries (LIBs) as a critical area of research. After thorough analysis, this study contends that the root cause of the majority of safety incidents involving LIBs in the field is predominantly linked to reliability issues within the battery products themselves. This argument offers a more targeted perspective than a broad discussion on the safety concerns of LIBs. Reliability, in this context, is defined as the likelihood that a product will execute its intended function without error over a defined period and under specific conditions. The paper delineates the reasons why current safety testing standards are unable to entirely prevent LIB safety incidents, scrutinizes the multifaceted causes and testing methodologies associated with LIB unpredictive thermal runaways from reliability perspective, and aims to reduce the probability of battery field failure and electric vehicle fire incidents, with an emphasis on mtigating unpredictive fire accidents. This study advocates for a more aggressive research effort into the reliability of LIBs, parallel to the vigorous advancement of safety technologies for these batteries.\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/batt.202400355\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400355","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
The Significance of Enhancing the Reliability of Lithium‐Ion Batteries in Reducing Electric Vehicle Field Safety Accidents
In recent years, the frequency of incidents related to the safety of electric vehicles (EVs) due to lithium‐ion batteries has seen a troubling uptick, leading to a heightened focus on the safety of lithium‐ion batteries (LIBs) as a critical area of research. After thorough analysis, this study contends that the root cause of the majority of safety incidents involving LIBs in the field is predominantly linked to reliability issues within the battery products themselves. This argument offers a more targeted perspective than a broad discussion on the safety concerns of LIBs. Reliability, in this context, is defined as the likelihood that a product will execute its intended function without error over a defined period and under specific conditions. The paper delineates the reasons why current safety testing standards are unable to entirely prevent LIB safety incidents, scrutinizes the multifaceted causes and testing methodologies associated with LIB unpredictive thermal runaways from reliability perspective, and aims to reduce the probability of battery field failure and electric vehicle fire incidents, with an emphasis on mtigating unpredictive fire accidents. This study advocates for a more aggressive research effort into the reliability of LIBs, parallel to the vigorous advancement of safety technologies for these batteries.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.