{"title":"增进对葡萄牙地震风险的了解","authors":"Gonçalo Correia Lopes, Vitor Silva, Catarina Costa, Romeu Vicente, Carlos Sousa Oliveira","doi":"10.1007/s10518-024-01975-0","DOIUrl":null,"url":null,"abstract":"<div><p>The assessment of earthquake risk at the national scale is crucial for the design and implementation of risk reduction measures. Due to its location in the southwest of the Eurasian plate, Portugal is exposed to moderate to strong seismic events, such as the well-known 1755 Lisbon earthquake. We reviewed existing studies covering exposure, seismic hazard, vulnerability, and risk assessment for Portugal, and performed probabilistic seismic hazard and risk analyses for the country using new model components. These include a new exposure model developed for the residential building stock using the 2021 national Building Census Survey, a recent exposure model for commercial and industrial buildings, updated vulnerability functions for 116 building classes, and the recently released European Probabilistic Seismic Hazard model. The seismic risk results include average annual economic losses, fatalities, buildings with complete damage, and population left homeless. These results allowed the identification of the regions in Portugal with the highest earthquake risk, as well as which building classes contribute the most to the overall impact.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 11","pages":"5379 - 5401"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-01975-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Advancing the understanding of earthquake risk in Portugal\",\"authors\":\"Gonçalo Correia Lopes, Vitor Silva, Catarina Costa, Romeu Vicente, Carlos Sousa Oliveira\",\"doi\":\"10.1007/s10518-024-01975-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The assessment of earthquake risk at the national scale is crucial for the design and implementation of risk reduction measures. Due to its location in the southwest of the Eurasian plate, Portugal is exposed to moderate to strong seismic events, such as the well-known 1755 Lisbon earthquake. We reviewed existing studies covering exposure, seismic hazard, vulnerability, and risk assessment for Portugal, and performed probabilistic seismic hazard and risk analyses for the country using new model components. These include a new exposure model developed for the residential building stock using the 2021 national Building Census Survey, a recent exposure model for commercial and industrial buildings, updated vulnerability functions for 116 building classes, and the recently released European Probabilistic Seismic Hazard model. The seismic risk results include average annual economic losses, fatalities, buildings with complete damage, and population left homeless. These results allowed the identification of the regions in Portugal with the highest earthquake risk, as well as which building classes contribute the most to the overall impact.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"22 11\",\"pages\":\"5379 - 5401\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10518-024-01975-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-01975-0\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-01975-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Advancing the understanding of earthquake risk in Portugal
The assessment of earthquake risk at the national scale is crucial for the design and implementation of risk reduction measures. Due to its location in the southwest of the Eurasian plate, Portugal is exposed to moderate to strong seismic events, such as the well-known 1755 Lisbon earthquake. We reviewed existing studies covering exposure, seismic hazard, vulnerability, and risk assessment for Portugal, and performed probabilistic seismic hazard and risk analyses for the country using new model components. These include a new exposure model developed for the residential building stock using the 2021 national Building Census Survey, a recent exposure model for commercial and industrial buildings, updated vulnerability functions for 116 building classes, and the recently released European Probabilistic Seismic Hazard model. The seismic risk results include average annual economic losses, fatalities, buildings with complete damage, and population left homeless. These results allowed the identification of the regions in Portugal with the highest earthquake risk, as well as which building classes contribute the most to the overall impact.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.