Håkan WennlöfDeutsches Elektronen-Synchrotron DESY, Dominik DannheimCERN, Manuel Del Rio VieraDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Katharina DortCERNUniversity of Giessen, Doris EcksteinDeutsches Elektronen-Synchrotron DESY, Finn FeindtDeutsches Elektronen-Synchrotron DESY, Ingrid-Maria GregorDeutsches Elektronen-Synchrotron DESY, Lennart HuthDeutsches Elektronen-Synchrotron DESY, Stephan LachnitDeutsches Elektronen-Synchrotron DESYUniversity of Hamburg, Larissa MendesDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Daniil RastorguevDeutsches Elektronen-Synchrotron DESYUniversity of Wuppertal, Sara Ruiz DazaDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Paul SchützeDeutsches Elektronen-Synchrotron DESY, Adriana SimancasDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Walter SnoeysCERN, Simon SpannagelDeutsches Elektronen-Synchrotron DESY, Marcel StanitzkiDeutsches Elektronen-Synchrotron DESY, Alessandra TomalUniversity of Campinas, Anastasiia VelykaDeutsches Elektronen-Synchrotron DESY, Gianpiero VignolaDeutsches Elektronen-Synchrotron DESYUniversity of Bonn
{"title":"模拟单片有源像素传感器:使用通用掺杂曲线的技术独立方法","authors":"Håkan WennlöfDeutsches Elektronen-Synchrotron DESY, Dominik DannheimCERN, Manuel Del Rio VieraDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Katharina DortCERNUniversity of Giessen, Doris EcksteinDeutsches Elektronen-Synchrotron DESY, Finn FeindtDeutsches Elektronen-Synchrotron DESY, Ingrid-Maria GregorDeutsches Elektronen-Synchrotron DESY, Lennart HuthDeutsches Elektronen-Synchrotron DESY, Stephan LachnitDeutsches Elektronen-Synchrotron DESYUniversity of Hamburg, Larissa MendesDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Daniil RastorguevDeutsches Elektronen-Synchrotron DESYUniversity of Wuppertal, Sara Ruiz DazaDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Paul SchützeDeutsches Elektronen-Synchrotron DESY, Adriana SimancasDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Walter SnoeysCERN, Simon SpannagelDeutsches Elektronen-Synchrotron DESY, Marcel StanitzkiDeutsches Elektronen-Synchrotron DESY, Alessandra TomalUniversity of Campinas, Anastasiia VelykaDeutsches Elektronen-Synchrotron DESY, Gianpiero VignolaDeutsches Elektronen-Synchrotron DESYUniversity of Bonn","doi":"arxiv-2408.00027","DOIUrl":null,"url":null,"abstract":"The optimisation of the sensitive region of CMOS sensors with complex\nnon-uniform electric fields requires precise simulations, and this can be\nachieved by a combination of electrostatic field simulations and Monte Carlo\nmethods. This paper presents the guiding principles of such simulations, using\na CMOS pixel sensor with a small collection electrode and a high-resistivity\nepitaxial layer as an example. The full simulation workflow is described, along\nwith possible pitfalls and how to avoid them. For commercial CMOS processes,\ndetailed doping profiles are confidential, but the presented method provides an\noptimisation tool that is sufficiently accurate to investigate sensor behaviour\nand trade-offs of different sensor designs without knowledge of proprietary\ninformation. The workflow starts with detailed electric field finite element method\nsimulations in TCAD, using generic doping profiles. Examples of the effect of\nvarying different parameters of the simulated sensor are shown, as well as the\ncreation of weighting fields, and transient pulse simulations. The fields\nresulting from TCAD simulations can be imported into the Allpix Squared Monte\nCarlo simulation framework, which enables high-statistics simulations,\nincluding modelling of stochastic fluctuations from the underlying physics\nprocesses of particle interaction. Example Monte Carlo simulation setups are\npresented and the different parts of a simulation chain are described. Simulation studies from small collection electrode CMOS sensors are\npresented, and example results are shown for both single sensors and multiple\nsensors in a test beam telescope configuration. The studies shown are those\ntypically performed on sensor prototypes in test beam campaigns, and a\ncomparison is made to test beam data, showing a maximum deviation of 4% and\ndemonstrating that the approach is viable for generating realistic results.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating Monolithic Active Pixel Sensors: A Technology-Independent Approach Using Generic Doping Profiles\",\"authors\":\"Håkan WennlöfDeutsches Elektronen-Synchrotron DESY, Dominik DannheimCERN, Manuel Del Rio VieraDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Katharina DortCERNUniversity of Giessen, Doris EcksteinDeutsches Elektronen-Synchrotron DESY, Finn FeindtDeutsches Elektronen-Synchrotron DESY, Ingrid-Maria GregorDeutsches Elektronen-Synchrotron DESY, Lennart HuthDeutsches Elektronen-Synchrotron DESY, Stephan LachnitDeutsches Elektronen-Synchrotron DESYUniversity of Hamburg, Larissa MendesDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Daniil RastorguevDeutsches Elektronen-Synchrotron DESYUniversity of Wuppertal, Sara Ruiz DazaDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Paul SchützeDeutsches Elektronen-Synchrotron DESY, Adriana SimancasDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Walter SnoeysCERN, Simon SpannagelDeutsches Elektronen-Synchrotron DESY, Marcel StanitzkiDeutsches Elektronen-Synchrotron DESY, Alessandra TomalUniversity of Campinas, Anastasiia VelykaDeutsches Elektronen-Synchrotron DESY, Gianpiero VignolaDeutsches Elektronen-Synchrotron DESYUniversity of Bonn\",\"doi\":\"arxiv-2408.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimisation of the sensitive region of CMOS sensors with complex\\nnon-uniform electric fields requires precise simulations, and this can be\\nachieved by a combination of electrostatic field simulations and Monte Carlo\\nmethods. This paper presents the guiding principles of such simulations, using\\na CMOS pixel sensor with a small collection electrode and a high-resistivity\\nepitaxial layer as an example. The full simulation workflow is described, along\\nwith possible pitfalls and how to avoid them. For commercial CMOS processes,\\ndetailed doping profiles are confidential, but the presented method provides an\\noptimisation tool that is sufficiently accurate to investigate sensor behaviour\\nand trade-offs of different sensor designs without knowledge of proprietary\\ninformation. The workflow starts with detailed electric field finite element method\\nsimulations in TCAD, using generic doping profiles. Examples of the effect of\\nvarying different parameters of the simulated sensor are shown, as well as the\\ncreation of weighting fields, and transient pulse simulations. The fields\\nresulting from TCAD simulations can be imported into the Allpix Squared Monte\\nCarlo simulation framework, which enables high-statistics simulations,\\nincluding modelling of stochastic fluctuations from the underlying physics\\nprocesses of particle interaction. Example Monte Carlo simulation setups are\\npresented and the different parts of a simulation chain are described. Simulation studies from small collection electrode CMOS sensors are\\npresented, and example results are shown for both single sensors and multiple\\nsensors in a test beam telescope configuration. The studies shown are those\\ntypically performed on sensor prototypes in test beam campaigns, and a\\ncomparison is made to test beam data, showing a maximum deviation of 4% and\\ndemonstrating that the approach is viable for generating realistic results.\",\"PeriodicalId\":501374,\"journal\":{\"name\":\"arXiv - PHYS - Instrumentation and Detectors\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Instrumentation and Detectors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Detectors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulating Monolithic Active Pixel Sensors: A Technology-Independent Approach Using Generic Doping Profiles
The optimisation of the sensitive region of CMOS sensors with complex
non-uniform electric fields requires precise simulations, and this can be
achieved by a combination of electrostatic field simulations and Monte Carlo
methods. This paper presents the guiding principles of such simulations, using
a CMOS pixel sensor with a small collection electrode and a high-resistivity
epitaxial layer as an example. The full simulation workflow is described, along
with possible pitfalls and how to avoid them. For commercial CMOS processes,
detailed doping profiles are confidential, but the presented method provides an
optimisation tool that is sufficiently accurate to investigate sensor behaviour
and trade-offs of different sensor designs without knowledge of proprietary
information. The workflow starts with detailed electric field finite element method
simulations in TCAD, using generic doping profiles. Examples of the effect of
varying different parameters of the simulated sensor are shown, as well as the
creation of weighting fields, and transient pulse simulations. The fields
resulting from TCAD simulations can be imported into the Allpix Squared Monte
Carlo simulation framework, which enables high-statistics simulations,
including modelling of stochastic fluctuations from the underlying physics
processes of particle interaction. Example Monte Carlo simulation setups are
presented and the different parts of a simulation chain are described. Simulation studies from small collection electrode CMOS sensors are
presented, and example results are shown for both single sensors and multiple
sensors in a test beam telescope configuration. The studies shown are those
typically performed on sensor prototypes in test beam campaigns, and a
comparison is made to test beam data, showing a maximum deviation of 4% and
demonstrating that the approach is viable for generating realistic results.