{"title":"非线性捕食者-猎物模型中的高阶质量聚集项维持土星 F 环的极限循环稳定性","authors":"Omar El Deeb","doi":"10.1016/j.physd.2024.134311","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a generic higher order mass aggregation term for interactions between particles exhibiting oscillatory clumping and disaggregation behavior in the F ring of Saturn, using a novel predator–prey model that relates the mean mass aggregate (prey) and the square of the relative dispersion velocity (predator) of the interacting particles. The resulting cyclic dynamic behavior is demonstrated through time series plots, phase portraits and their stroboscopic phase maps.</p><p>Employing an eigenvalue stability analysis of the Jacobian of the system, we find out that there are two distinct regimes depending on the exponent and the amplitude of the higher order interactions of the nonlinear mass term. In particular, the system exhibits a limit cycle oscillatory stable behavior for a range of values of these parameters and a non-cyclic behavior for another range, separated by a curve across which phase transitions would occur between the two regimes. This shows that the observed clumping dynamics in Saturn’s F ring, corresponding to a limit cycle stability regime, can be systematically maintained in presence of physical higher order mass aggregation terms in the introduced model.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167278924002628/pdfft?md5=c64de23a9fa9a2db870b09586c802e39&pid=1-s2.0-S0167278924002628-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Higher order mass aggregation terms in a nonlinear predator–prey model maintain limit cycle stability in Saturn’s F ring\",\"authors\":\"Omar El Deeb\",\"doi\":\"10.1016/j.physd.2024.134311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a generic higher order mass aggregation term for interactions between particles exhibiting oscillatory clumping and disaggregation behavior in the F ring of Saturn, using a novel predator–prey model that relates the mean mass aggregate (prey) and the square of the relative dispersion velocity (predator) of the interacting particles. The resulting cyclic dynamic behavior is demonstrated through time series plots, phase portraits and their stroboscopic phase maps.</p><p>Employing an eigenvalue stability analysis of the Jacobian of the system, we find out that there are two distinct regimes depending on the exponent and the amplitude of the higher order interactions of the nonlinear mass term. In particular, the system exhibits a limit cycle oscillatory stable behavior for a range of values of these parameters and a non-cyclic behavior for another range, separated by a curve across which phase transitions would occur between the two regimes. This shows that the observed clumping dynamics in Saturn’s F ring, corresponding to a limit cycle stability regime, can be systematically maintained in presence of physical higher order mass aggregation terms in the introduced model.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002628/pdfft?md5=c64de23a9fa9a2db870b09586c802e39&pid=1-s2.0-S0167278924002628-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们利用一个新颖的捕食者-猎物模型,考虑了土星 F 环中表现出振荡结块和分解行为的粒子之间相互作用的一般高阶质量聚集项,该模型将相互作用粒子的平均质量聚集(猎物)与相对分散速度(捕食者)的平方联系起来。通过时间序列图、相位图及其频闪相位图展示了由此产生的循环动态行为。
Higher order mass aggregation terms in a nonlinear predator–prey model maintain limit cycle stability in Saturn’s F ring
We consider a generic higher order mass aggregation term for interactions between particles exhibiting oscillatory clumping and disaggregation behavior in the F ring of Saturn, using a novel predator–prey model that relates the mean mass aggregate (prey) and the square of the relative dispersion velocity (predator) of the interacting particles. The resulting cyclic dynamic behavior is demonstrated through time series plots, phase portraits and their stroboscopic phase maps.
Employing an eigenvalue stability analysis of the Jacobian of the system, we find out that there are two distinct regimes depending on the exponent and the amplitude of the higher order interactions of the nonlinear mass term. In particular, the system exhibits a limit cycle oscillatory stable behavior for a range of values of these parameters and a non-cyclic behavior for another range, separated by a curve across which phase transitions would occur between the two regimes. This shows that the observed clumping dynamics in Saturn’s F ring, corresponding to a limit cycle stability regime, can be systematically maintained in presence of physical higher order mass aggregation terms in the introduced model.