Michele Rosso, Simone Cuccurullo, Filippo Pietro Perli, Federico Maspero, Alberto Corigliano, Raffaele Ardito
{"title":"增强振动能量收集器非线性磁拨的方法","authors":"Michele Rosso, Simone Cuccurullo, Filippo Pietro Perli, Federico Maspero, Alberto Corigliano, Raffaele Ardito","doi":"10.1007/s11012-024-01856-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a technique to improve the magnetic plucking for frequency up-conversion in piezoelectric energy harvesters is presented. The technique involves shielded magnets with Neodymium-iron-boron alloy polarized in the opposite direction on a main magnet. The phenomenon is investigated both at the computational and at the experimental level. Subsequently, simulations on a mesoscale piezoelectric energy harvester are presented which demonstrate a gain of 17 times if the magnets are shielded in comparison with the classical plucking (i.e. without shielding). The technique finds useful applications and benefits in the field of low-speed and low-frequency vibration energy harvesting, as well as in actuation and sensing.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 9","pages":"1577 - 1592"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-024-01856-5.pdf","citationCount":"0","resultStr":"{\"title\":\"A method to enhance the nonlinear magnetic plucking for vibration energy harvesters\",\"authors\":\"Michele Rosso, Simone Cuccurullo, Filippo Pietro Perli, Federico Maspero, Alberto Corigliano, Raffaele Ardito\",\"doi\":\"10.1007/s11012-024-01856-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, a technique to improve the magnetic plucking for frequency up-conversion in piezoelectric energy harvesters is presented. The technique involves shielded magnets with Neodymium-iron-boron alloy polarized in the opposite direction on a main magnet. The phenomenon is investigated both at the computational and at the experimental level. Subsequently, simulations on a mesoscale piezoelectric energy harvester are presented which demonstrate a gain of 17 times if the magnets are shielded in comparison with the classical plucking (i.e. without shielding). The technique finds useful applications and benefits in the field of low-speed and low-frequency vibration energy harvesting, as well as in actuation and sensing.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"59 9\",\"pages\":\"1577 - 1592\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11012-024-01856-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-024-01856-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01856-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
A method to enhance the nonlinear magnetic plucking for vibration energy harvesters
In this work, a technique to improve the magnetic plucking for frequency up-conversion in piezoelectric energy harvesters is presented. The technique involves shielded magnets with Neodymium-iron-boron alloy polarized in the opposite direction on a main magnet. The phenomenon is investigated both at the computational and at the experimental level. Subsequently, simulations on a mesoscale piezoelectric energy harvester are presented which demonstrate a gain of 17 times if the magnets are shielded in comparison with the classical plucking (i.e. without shielding). The technique finds useful applications and benefits in the field of low-speed and low-frequency vibration energy harvesting, as well as in actuation and sensing.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.