单流体双温欧拉非平衡流体力学的高阶非连续伽勒金方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jian Cheng
{"title":"单流体双温欧拉非平衡流体力学的高阶非连续伽勒金方法","authors":"Jian Cheng","doi":"10.1007/s10915-024-02640-z","DOIUrl":null,"url":null,"abstract":"<p>In this work, we present a high-order discontinuous Galerkin (DG) method for solving the one-fluid two-temperature Euler equations for non-equilibrium hydrodynamics. In order to achieve optimal order of accuracy as well as suppress potential numerical oscillations behind strong shocks, special jump terms are applied in the DG spatial discretization for the nonconservative equation of electronic internal energy. Moreover, inspired by the solution procedure of Riemann problem, we develop a new HLLC (Harten–Lax–van Leer Contact) approximate Riemann solver for the one-fluid two-temperature Euler equations and use it as a building block for the high-order discontinuous Galerkin method. Several key features of the proposed HLLC approximate Riemann solver are analyzed. Finally, we design typical test cases to numerically verify and demonstrate the performance of the proposed method.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High-Order Discontinuous Galerkin Method for One-Fluid Two-Temperature Euler Non-equilibrium Hydrodynamics\",\"authors\":\"Jian Cheng\",\"doi\":\"10.1007/s10915-024-02640-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we present a high-order discontinuous Galerkin (DG) method for solving the one-fluid two-temperature Euler equations for non-equilibrium hydrodynamics. In order to achieve optimal order of accuracy as well as suppress potential numerical oscillations behind strong shocks, special jump terms are applied in the DG spatial discretization for the nonconservative equation of electronic internal energy. Moreover, inspired by the solution procedure of Riemann problem, we develop a new HLLC (Harten–Lax–van Leer Contact) approximate Riemann solver for the one-fluid two-temperature Euler equations and use it as a building block for the high-order discontinuous Galerkin method. Several key features of the proposed HLLC approximate Riemann solver are analyzed. Finally, we design typical test cases to numerically verify and demonstrate the performance of the proposed method.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02640-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02640-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种高阶非连续伽勒金(DG)方法,用于求解非平衡流体力学的单流体双温欧拉方程。为了达到最佳精度阶次以及抑制强冲击后的潜在数值振荡,在电子内能非保守方程的 DG 空间离散化中应用了特殊的跳跃项。此外,受黎曼问题求解过程的启发,我们为一流体双温欧拉方程开发了一种新的 HLLC(Harten-Lax-van Leer Contact)近似黎曼求解器,并将其作为高阶非连续伽勒金方法的构建模块。我们分析了所提出的 HLLC 近似黎曼求解器的几个关键特征。最后,我们设计了典型的测试案例,对所提出方法的性能进行数值验证和演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A High-Order Discontinuous Galerkin Method for One-Fluid Two-Temperature Euler Non-equilibrium Hydrodynamics

A High-Order Discontinuous Galerkin Method for One-Fluid Two-Temperature Euler Non-equilibrium Hydrodynamics

In this work, we present a high-order discontinuous Galerkin (DG) method for solving the one-fluid two-temperature Euler equations for non-equilibrium hydrodynamics. In order to achieve optimal order of accuracy as well as suppress potential numerical oscillations behind strong shocks, special jump terms are applied in the DG spatial discretization for the nonconservative equation of electronic internal energy. Moreover, inspired by the solution procedure of Riemann problem, we develop a new HLLC (Harten–Lax–van Leer Contact) approximate Riemann solver for the one-fluid two-temperature Euler equations and use it as a building block for the high-order discontinuous Galerkin method. Several key features of the proposed HLLC approximate Riemann solver are analyzed. Finally, we design typical test cases to numerically verify and demonstrate the performance of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信