{"title":"单流体双温欧拉非平衡流体力学的高阶非连续伽勒金方法","authors":"Jian Cheng","doi":"10.1007/s10915-024-02640-z","DOIUrl":null,"url":null,"abstract":"<p>In this work, we present a high-order discontinuous Galerkin (DG) method for solving the one-fluid two-temperature Euler equations for non-equilibrium hydrodynamics. In order to achieve optimal order of accuracy as well as suppress potential numerical oscillations behind strong shocks, special jump terms are applied in the DG spatial discretization for the nonconservative equation of electronic internal energy. Moreover, inspired by the solution procedure of Riemann problem, we develop a new HLLC (Harten–Lax–van Leer Contact) approximate Riemann solver for the one-fluid two-temperature Euler equations and use it as a building block for the high-order discontinuous Galerkin method. Several key features of the proposed HLLC approximate Riemann solver are analyzed. Finally, we design typical test cases to numerically verify and demonstrate the performance of the proposed method.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"9 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High-Order Discontinuous Galerkin Method for One-Fluid Two-Temperature Euler Non-equilibrium Hydrodynamics\",\"authors\":\"Jian Cheng\",\"doi\":\"10.1007/s10915-024-02640-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we present a high-order discontinuous Galerkin (DG) method for solving the one-fluid two-temperature Euler equations for non-equilibrium hydrodynamics. In order to achieve optimal order of accuracy as well as suppress potential numerical oscillations behind strong shocks, special jump terms are applied in the DG spatial discretization for the nonconservative equation of electronic internal energy. Moreover, inspired by the solution procedure of Riemann problem, we develop a new HLLC (Harten–Lax–van Leer Contact) approximate Riemann solver for the one-fluid two-temperature Euler equations and use it as a building block for the high-order discontinuous Galerkin method. Several key features of the proposed HLLC approximate Riemann solver are analyzed. Finally, we design typical test cases to numerically verify and demonstrate the performance of the proposed method.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02640-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02640-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A High-Order Discontinuous Galerkin Method for One-Fluid Two-Temperature Euler Non-equilibrium Hydrodynamics
In this work, we present a high-order discontinuous Galerkin (DG) method for solving the one-fluid two-temperature Euler equations for non-equilibrium hydrodynamics. In order to achieve optimal order of accuracy as well as suppress potential numerical oscillations behind strong shocks, special jump terms are applied in the DG spatial discretization for the nonconservative equation of electronic internal energy. Moreover, inspired by the solution procedure of Riemann problem, we develop a new HLLC (Harten–Lax–van Leer Contact) approximate Riemann solver for the one-fluid two-temperature Euler equations and use it as a building block for the high-order discontinuous Galerkin method. Several key features of the proposed HLLC approximate Riemann solver are analyzed. Finally, we design typical test cases to numerically verify and demonstrate the performance of the proposed method.
期刊介绍:
Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering.
The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.