Nicolas Caram, Felipe Casalás, Marcelo O. Wallau, Lynn E. Sollenberger, Pablo Soca, Mónica Cadenazzi, Pablo Boggiano
{"title":"考虑坎波斯草原种内性状时间变异的重要性","authors":"Nicolas Caram, Felipe Casalás, Marcelo O. Wallau, Lynn E. Sollenberger, Pablo Soca, Mónica Cadenazzi, Pablo Boggiano","doi":"10.1111/jvs.13294","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>Changes in species composition and intraspecific trait variation are recognized as potential drivers of population and community temporal dynamics but their independent and overlapping effects have not been distinguished conclusively. Our goal was to quantify the relevance of temporal vs spatial changes in species composition and intraspecific trait variations when assessing community responses to seasonality, grazing pressure and above-ground biomass gradients.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p><i>Campos</i> grassland in northeastern Uruguay.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Leaf dry matter content, specific leaf area, leaf width and tensile strength of dominant grass species were assessed across summer–autumn, winter, and spring seasons, under two grazing pressures. Species composition and above-ground biomass were estimated in 20 × 20-cm permanent quadrats within each season. Species trait variability was decomposed across space and time using hierarchical linear mixed models, while the spatio-temporal community functional variation was decomposed into species turnover (abundance and/or species identity shifts) and intraspecific trait variation. Additionally, we explored the relevance of including or not including temporal intraspecific trait variation on community responses to seasonality, above-ground biomass and grazing pressure using linear mixed models.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Intraspecific trait variation explained 22.4%–66.5% of total trait variability, and it was generally more important across time than space, which accounted for 12.2%–57.7% of total variability. The within-species trait variability was generally more important than species turnover in explaining the community spatio-temporal functional variation. In general, seasonality more strongly caused intraspecific changes while the above-ground biomass gradient caused species turnover. Functional community responses to grazing pressure, above-ground biomass and seasonality were affected by considering or not considering intraspecific trait variation.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Trait variation within species across seasons is at least equally important as variation within species across space. Its influence in the functional changes of vegetation should not be considered only along environmental gradients but also through time.</p>\n </section>\n </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"35 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The importance of considering temporal intraspecific trait variation in Campos grasslands\",\"authors\":\"Nicolas Caram, Felipe Casalás, Marcelo O. Wallau, Lynn E. Sollenberger, Pablo Soca, Mónica Cadenazzi, Pablo Boggiano\",\"doi\":\"10.1111/jvs.13294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aims</h3>\\n \\n <p>Changes in species composition and intraspecific trait variation are recognized as potential drivers of population and community temporal dynamics but their independent and overlapping effects have not been distinguished conclusively. Our goal was to quantify the relevance of temporal vs spatial changes in species composition and intraspecific trait variations when assessing community responses to seasonality, grazing pressure and above-ground biomass gradients.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p><i>Campos</i> grassland in northeastern Uruguay.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Leaf dry matter content, specific leaf area, leaf width and tensile strength of dominant grass species were assessed across summer–autumn, winter, and spring seasons, under two grazing pressures. Species composition and above-ground biomass were estimated in 20 × 20-cm permanent quadrats within each season. Species trait variability was decomposed across space and time using hierarchical linear mixed models, while the spatio-temporal community functional variation was decomposed into species turnover (abundance and/or species identity shifts) and intraspecific trait variation. Additionally, we explored the relevance of including or not including temporal intraspecific trait variation on community responses to seasonality, above-ground biomass and grazing pressure using linear mixed models.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Intraspecific trait variation explained 22.4%–66.5% of total trait variability, and it was generally more important across time than space, which accounted for 12.2%–57.7% of total variability. The within-species trait variability was generally more important than species turnover in explaining the community spatio-temporal functional variation. In general, seasonality more strongly caused intraspecific changes while the above-ground biomass gradient caused species turnover. Functional community responses to grazing pressure, above-ground biomass and seasonality were affected by considering or not considering intraspecific trait variation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Trait variation within species across seasons is at least equally important as variation within species across space. Its influence in the functional changes of vegetation should not be considered only along environmental gradients but also through time.</p>\\n </section>\\n </div>\",\"PeriodicalId\":49965,\"journal\":{\"name\":\"Journal of Vegetation Science\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vegetation Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jvs.13294\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vegetation Science","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jvs.13294","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
The importance of considering temporal intraspecific trait variation in Campos grasslands
Aims
Changes in species composition and intraspecific trait variation are recognized as potential drivers of population and community temporal dynamics but their independent and overlapping effects have not been distinguished conclusively. Our goal was to quantify the relevance of temporal vs spatial changes in species composition and intraspecific trait variations when assessing community responses to seasonality, grazing pressure and above-ground biomass gradients.
Location
Campos grassland in northeastern Uruguay.
Methods
Leaf dry matter content, specific leaf area, leaf width and tensile strength of dominant grass species were assessed across summer–autumn, winter, and spring seasons, under two grazing pressures. Species composition and above-ground biomass were estimated in 20 × 20-cm permanent quadrats within each season. Species trait variability was decomposed across space and time using hierarchical linear mixed models, while the spatio-temporal community functional variation was decomposed into species turnover (abundance and/or species identity shifts) and intraspecific trait variation. Additionally, we explored the relevance of including or not including temporal intraspecific trait variation on community responses to seasonality, above-ground biomass and grazing pressure using linear mixed models.
Results
Intraspecific trait variation explained 22.4%–66.5% of total trait variability, and it was generally more important across time than space, which accounted for 12.2%–57.7% of total variability. The within-species trait variability was generally more important than species turnover in explaining the community spatio-temporal functional variation. In general, seasonality more strongly caused intraspecific changes while the above-ground biomass gradient caused species turnover. Functional community responses to grazing pressure, above-ground biomass and seasonality were affected by considering or not considering intraspecific trait variation.
Conclusions
Trait variation within species across seasons is at least equally important as variation within species across space. Its influence in the functional changes of vegetation should not be considered only along environmental gradients but also through time.
期刊介绍:
The Journal of Vegetation Science publishes papers on all aspects of plant community ecology, with particular emphasis on papers that develop new concepts or methods, test theory, identify general patterns, or that are otherwise likely to interest a broad international readership. Papers may focus on any aspect of vegetation science, e.g. community structure (including community assembly and plant functional types), biodiversity (including species richness and composition), spatial patterns (including plant geography and landscape ecology), temporal changes (including demography, community dynamics and palaeoecology) and processes (including ecophysiology), provided the focus is on increasing our understanding of plant communities. The Journal publishes papers on the ecology of a single species only if it plays a key role in structuring plant communities. Papers that apply ecological concepts, theories and methods to the vegetation management, conservation and restoration, and papers on vegetation survey should be directed to our associate journal, Applied Vegetation Science journal.