关于无限区间上分数随机演化系统的 Cauchy 问题的新研究

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
S. Sivasankar, K. Nadhaprasadh, M. Sathish Kumar, Shrideh Al‐Omari, R. Udhayakumar
{"title":"关于无限区间上分数随机演化系统的 Cauchy 问题的新研究","authors":"S. Sivasankar, K. Nadhaprasadh, M. Sathish Kumar, Shrideh Al‐Omari, R. Udhayakumar","doi":"10.1002/mma.10365","DOIUrl":null,"url":null,"abstract":"In this study, we examine whether mild solutions to a fractional stochastic evolution system with a fractional Caputo derivative on an infinite interval exist and are attractive. We use semigroup theory, fractional calculus, stochastic analysis, compactness methods, and the measure of noncompactness (MNC) as the foundation for our methodologies. There are several suggested sufficient requirements for the existence of mild solutions to the stated problem. Examples that highlight the key findings are provided.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New study on Cauchy problems of fractional stochastic evolution systems on an infinite interval\",\"authors\":\"S. Sivasankar, K. Nadhaprasadh, M. Sathish Kumar, Shrideh Al‐Omari, R. Udhayakumar\",\"doi\":\"10.1002/mma.10365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we examine whether mild solutions to a fractional stochastic evolution system with a fractional Caputo derivative on an infinite interval exist and are attractive. We use semigroup theory, fractional calculus, stochastic analysis, compactness methods, and the measure of noncompactness (MNC) as the foundation for our methodologies. There are several suggested sufficient requirements for the existence of mild solutions to the stated problem. Examples that highlight the key findings are provided.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们探讨了在无限区间上具有分数卡普托导数的分数随机演化系统的温和解是否存在并具有吸引力。我们使用半群理论、分数微积分、随机分析、紧凑性方法和非紧凑性度量(MNC)作为我们研究方法的基础。对于所述问题的温和解的存在,我们提出了几个充分条件。我们还提供了一些例子来突出主要发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New study on Cauchy problems of fractional stochastic evolution systems on an infinite interval
In this study, we examine whether mild solutions to a fractional stochastic evolution system with a fractional Caputo derivative on an infinite interval exist and are attractive. We use semigroup theory, fractional calculus, stochastic analysis, compactness methods, and the measure of noncompactness (MNC) as the foundation for our methodologies. There are several suggested sufficient requirements for the existence of mild solutions to the stated problem. Examples that highlight the key findings are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信