{"title":"效率和复原力:配电网增长的主要驱动力","authors":"Ambra Amico, Giacomo Vaccario, Frank Schweitzer","doi":"10.1140/epjds/s13688-024-00484-z","DOIUrl":null,"url":null,"abstract":"<p>Networks to distribute goods, from raw materials to food and medicines, are the backbone of a functioning economy. They are shaped by several supply relations connecting manufacturers, distributors, and final buyers worldwide. We present a network-based model to describe the mechanisms underlying the emergence and growth of distribution networks. In our model, firms consider two practices when establishing new supply relations: centralization, the tendency to choose highly connected partners, and multi-sourcing, the preference for multiple suppliers. Centralization enhances network efficiency by leveraging short distribution paths; multi-sourcing fosters resilience by providing multiple distribution paths connecting final buyers to the manufacturer. We validate the proposed model using data on drug shipments in the US. Drawing on these data, we reconstruct 22 nationwide pharmaceutical distribution networks. We demonstrate that the proposed model successfully replicates several structural features of the empirical networks, including their out-degree and path length distributions as well as their resilience and efficiency properties. These findings suggest that the proposed firm-level practices effectively capture the network growth process that leads to the observed structures.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"21 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency and resilience: key drivers of distribution network growth\",\"authors\":\"Ambra Amico, Giacomo Vaccario, Frank Schweitzer\",\"doi\":\"10.1140/epjds/s13688-024-00484-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Networks to distribute goods, from raw materials to food and medicines, are the backbone of a functioning economy. They are shaped by several supply relations connecting manufacturers, distributors, and final buyers worldwide. We present a network-based model to describe the mechanisms underlying the emergence and growth of distribution networks. In our model, firms consider two practices when establishing new supply relations: centralization, the tendency to choose highly connected partners, and multi-sourcing, the preference for multiple suppliers. Centralization enhances network efficiency by leveraging short distribution paths; multi-sourcing fosters resilience by providing multiple distribution paths connecting final buyers to the manufacturer. We validate the proposed model using data on drug shipments in the US. Drawing on these data, we reconstruct 22 nationwide pharmaceutical distribution networks. We demonstrate that the proposed model successfully replicates several structural features of the empirical networks, including their out-degree and path length distributions as well as their resilience and efficiency properties. These findings suggest that the proposed firm-level practices effectively capture the network growth process that leads to the observed structures.</p>\",\"PeriodicalId\":11887,\"journal\":{\"name\":\"EPJ Data Science\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Data Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1140/epjds/s13688-024-00484-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-024-00484-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Efficiency and resilience: key drivers of distribution network growth
Networks to distribute goods, from raw materials to food and medicines, are the backbone of a functioning economy. They are shaped by several supply relations connecting manufacturers, distributors, and final buyers worldwide. We present a network-based model to describe the mechanisms underlying the emergence and growth of distribution networks. In our model, firms consider two practices when establishing new supply relations: centralization, the tendency to choose highly connected partners, and multi-sourcing, the preference for multiple suppliers. Centralization enhances network efficiency by leveraging short distribution paths; multi-sourcing fosters resilience by providing multiple distribution paths connecting final buyers to the manufacturer. We validate the proposed model using data on drug shipments in the US. Drawing on these data, we reconstruct 22 nationwide pharmaceutical distribution networks. We demonstrate that the proposed model successfully replicates several structural features of the empirical networks, including their out-degree and path length distributions as well as their resilience and efficiency properties. These findings suggest that the proposed firm-level practices effectively capture the network growth process that leads to the observed structures.
期刊介绍:
EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.