环的局部化的最小素数

Pub Date : 2024-07-25 DOI:10.1016/j.jpaa.2024.107776
V.V. Bavula
{"title":"环的局部化的最小素数","authors":"V.V. Bavula","doi":"10.1016/j.jpaa.2024.107776","DOIUrl":null,"url":null,"abstract":"<div><p>The set of minimal primes of a ring is a very important set as far the spectrum of a ring is concerned as every prime contains a minimal prime. So, knowing the minimal primes is the first (important and difficult) step in describing the spectrum. In the algebraic geometry, the minimal primes of the algebra of regular functions on an algebraic variety determine/correspond to the irreducible components of the variety. The aim of the paper is to obtain several descriptions of the set of minimal prime ideals of localizations of rings under several natural assumptions. In particular, the following cases are considered: a localization of a semiprime ring with finite set of minimal primes; a localization of a prime rich ring where the localization respects the ideal structure of primes and primeness of certain minimal primes; a localization of a ring at a left denominator set generated by normal elements, and others. As an application, for a semiprime ring with finitely many minimal primes, a description of the minimal primes of its largest left/right quotient ring is obtained.</p><p>For a semiprime ring <em>R</em> with finitely many minimal primes <span><math><mi>min</mi><mo>⁡</mo><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, criteria are given for the map<span><span><span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>R</mi><mo>,</mo><mi>min</mi></mrow></msub><mo>:</mo><mi>min</mi><mo>⁡</mo><mo>(</mo><mi>R</mi><mo>)</mo><mo>→</mo><mi>min</mi><mo>⁡</mo><mo>(</mo><mi>Z</mi><mo>(</mo><mi>R</mi><mo>)</mo><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mi>p</mi><mo>↦</mo><mi>p</mi><mo>∩</mo><mi>Z</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span></span></span> being a well-defined map or surjective where <span><math><mi>Z</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is the centre of <em>R</em>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022404924001737/pdfft?md5=1e0b674103716acf2964ce8202dc8825&pid=1-s2.0-S0022404924001737-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The minimal primes of localizations of rings\",\"authors\":\"V.V. Bavula\",\"doi\":\"10.1016/j.jpaa.2024.107776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The set of minimal primes of a ring is a very important set as far the spectrum of a ring is concerned as every prime contains a minimal prime. So, knowing the minimal primes is the first (important and difficult) step in describing the spectrum. In the algebraic geometry, the minimal primes of the algebra of regular functions on an algebraic variety determine/correspond to the irreducible components of the variety. The aim of the paper is to obtain several descriptions of the set of minimal prime ideals of localizations of rings under several natural assumptions. In particular, the following cases are considered: a localization of a semiprime ring with finite set of minimal primes; a localization of a prime rich ring where the localization respects the ideal structure of primes and primeness of certain minimal primes; a localization of a ring at a left denominator set generated by normal elements, and others. As an application, for a semiprime ring with finitely many minimal primes, a description of the minimal primes of its largest left/right quotient ring is obtained.</p><p>For a semiprime ring <em>R</em> with finitely many minimal primes <span><math><mi>min</mi><mo>⁡</mo><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, criteria are given for the map<span><span><span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>R</mi><mo>,</mo><mi>min</mi></mrow></msub><mo>:</mo><mi>min</mi><mo>⁡</mo><mo>(</mo><mi>R</mi><mo>)</mo><mo>→</mo><mi>min</mi><mo>⁡</mo><mo>(</mo><mi>Z</mi><mo>(</mo><mi>R</mi><mo>)</mo><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mi>p</mi><mo>↦</mo><mi>p</mi><mo>∩</mo><mi>Z</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span></span></span> being a well-defined map or surjective where <span><math><mi>Z</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is the centre of <em>R</em>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001737/pdfft?md5=1e0b674103716acf2964ce8202dc8825&pid=1-s2.0-S0022404924001737-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

就环谱而言,环的最小素数集是一个非常重要的集合,因为每个素数都包含一个最小素数。因此,知道极小素数是描述频谱的第一步(重要而困难)。在代数几何中,代数式上正则函数代数的最小素决定/对应于代数式的不可还原成分。本文的目的是在几个自然假设条件下,对环的局部化的极小素数理想集进行几种描述。本文特别考虑了以下情况:具有有限极小素数集的半素数环的局部化;富素数环的局部化,其中局部化尊重素数的理想结构和某些极小素数的原始性;由正常元素生成的左分母集上的环的局部化等。作为应用,对于具有有限多个极小素数的半素数环,可以得到其最大左/右商数环的极小素数描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The minimal primes of localizations of rings

The set of minimal primes of a ring is a very important set as far the spectrum of a ring is concerned as every prime contains a minimal prime. So, knowing the minimal primes is the first (important and difficult) step in describing the spectrum. In the algebraic geometry, the minimal primes of the algebra of regular functions on an algebraic variety determine/correspond to the irreducible components of the variety. The aim of the paper is to obtain several descriptions of the set of minimal prime ideals of localizations of rings under several natural assumptions. In particular, the following cases are considered: a localization of a semiprime ring with finite set of minimal primes; a localization of a prime rich ring where the localization respects the ideal structure of primes and primeness of certain minimal primes; a localization of a ring at a left denominator set generated by normal elements, and others. As an application, for a semiprime ring with finitely many minimal primes, a description of the minimal primes of its largest left/right quotient ring is obtained.

For a semiprime ring R with finitely many minimal primes min(R), criteria are given for the mapρR,min:min(R)min(Z(R)),ppZ(R) being a well-defined map or surjective where Z(R) is the centre of R.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信