Raghavendra M. Shet, Girish V. Lakhekar, Nalini C. Iyer, Sandeep D. Hanwate
{"title":"受参数不确定性和干扰影响的基于模糊准 SMC 的自主车辆稳健转向控制","authors":"Raghavendra M. Shet, Girish V. Lakhekar, Nalini C. Iyer, Sandeep D. Hanwate","doi":"10.1007/s12239-024-00123-6","DOIUrl":null,"url":null,"abstract":"<p>This article proposes a new formulation for a robust trajectory tracking control law of an autonomous vehicle. Autonomous vehicle navigation highly relies on reliable, robust, and dependable steering mechanism, even under challenging conditions and circumstances. The controller design is based on the higher order quasi-sliding mode control (QSMC) algorithm that provides smooth motion control subjected to steering saturation and curvature constraints. In addition, an adaptive single input fuzzy logic control based on Lyapunov stability theorem is incorporated, which relies on the online estimation of perturbations rather than relying on the requirement of a priori knowledge of the upper bounds of the perturbation. Furthermore, the proposed control scheme exhibits a strong robustness toward the effect of uncertainties like parametric, tire cornering stiffness, surface bonding coefficient, and exogenous noises and disturbances. In addition to that, fuzzy control term offers a fast path-tracking error convergence toward equilibrium condition and reduced steady-state error. The overall control scheme through Lyapunov theory ensures the global asymptotic stability of the autonomous vehicle. Finally, the effectiveness and robustness of the proposed control scheme is demonstrated through numerical simulations MATLAB/SIMULINK platform for linear and nonlinear scenarios. Later, experimental validation is conducted over dSPACE SCALEXIO hardware-in-loop (HIL) platform for trajectory tracking along with the input constraints subjected to parametric uncertainties and disturbances.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"177 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Fuzzy Quasi-SMC-Based Steering Control of Autonomous Vehicle Subject to Parametric Uncertainties and Disturbances\",\"authors\":\"Raghavendra M. Shet, Girish V. Lakhekar, Nalini C. Iyer, Sandeep D. Hanwate\",\"doi\":\"10.1007/s12239-024-00123-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article proposes a new formulation for a robust trajectory tracking control law of an autonomous vehicle. Autonomous vehicle navigation highly relies on reliable, robust, and dependable steering mechanism, even under challenging conditions and circumstances. The controller design is based on the higher order quasi-sliding mode control (QSMC) algorithm that provides smooth motion control subjected to steering saturation and curvature constraints. In addition, an adaptive single input fuzzy logic control based on Lyapunov stability theorem is incorporated, which relies on the online estimation of perturbations rather than relying on the requirement of a priori knowledge of the upper bounds of the perturbation. Furthermore, the proposed control scheme exhibits a strong robustness toward the effect of uncertainties like parametric, tire cornering stiffness, surface bonding coefficient, and exogenous noises and disturbances. In addition to that, fuzzy control term offers a fast path-tracking error convergence toward equilibrium condition and reduced steady-state error. The overall control scheme through Lyapunov theory ensures the global asymptotic stability of the autonomous vehicle. Finally, the effectiveness and robustness of the proposed control scheme is demonstrated through numerical simulations MATLAB/SIMULINK platform for linear and nonlinear scenarios. Later, experimental validation is conducted over dSPACE SCALEXIO hardware-in-loop (HIL) platform for trajectory tracking along with the input constraints subjected to parametric uncertainties and disturbances.</p>\",\"PeriodicalId\":50338,\"journal\":{\"name\":\"International Journal of Automotive Technology\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00123-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00123-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Robust Fuzzy Quasi-SMC-Based Steering Control of Autonomous Vehicle Subject to Parametric Uncertainties and Disturbances
This article proposes a new formulation for a robust trajectory tracking control law of an autonomous vehicle. Autonomous vehicle navigation highly relies on reliable, robust, and dependable steering mechanism, even under challenging conditions and circumstances. The controller design is based on the higher order quasi-sliding mode control (QSMC) algorithm that provides smooth motion control subjected to steering saturation and curvature constraints. In addition, an adaptive single input fuzzy logic control based on Lyapunov stability theorem is incorporated, which relies on the online estimation of perturbations rather than relying on the requirement of a priori knowledge of the upper bounds of the perturbation. Furthermore, the proposed control scheme exhibits a strong robustness toward the effect of uncertainties like parametric, tire cornering stiffness, surface bonding coefficient, and exogenous noises and disturbances. In addition to that, fuzzy control term offers a fast path-tracking error convergence toward equilibrium condition and reduced steady-state error. The overall control scheme through Lyapunov theory ensures the global asymptotic stability of the autonomous vehicle. Finally, the effectiveness and robustness of the proposed control scheme is demonstrated through numerical simulations MATLAB/SIMULINK platform for linear and nonlinear scenarios. Later, experimental validation is conducted over dSPACE SCALEXIO hardware-in-loop (HIL) platform for trajectory tracking along with the input constraints subjected to parametric uncertainties and disturbances.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.