用磷酸镍催化剂层对泡沫镍进行阳极氧化改性,以促进电催化尿素氧化和氢气进化反应

IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mohamed A. Ghanem, Abdullah M. Al-Mayouf, Mohamed O. Abdulkader, Khalaf A. Alfudhayli
{"title":"用磷酸镍催化剂层对泡沫镍进行阳极氧化改性,以促进电催化尿素氧化和氢气进化反应","authors":"Mohamed A. Ghanem,&nbsp;Abdullah M. Al-Mayouf,&nbsp;Mohamed O. Abdulkader,&nbsp;Khalaf A. Alfudhayli","doi":"10.1016/j.jscs.2024.101913","DOIUrl":null,"url":null,"abstract":"<div><p>Urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) are the key processes for implementing urinated water electrolysis and hydrogen green production, respectively. This contribution investigates the modification of commercial nickel foam (NF) with a nickel phosphate (NiPO/NF) heterostructure layer via anodizing in phosphate solution at various potentials (5, 10 and 15 V) as a simple and efficient route to boost the urea-assisted water electrolysis and hydrogen production in alkaline medium. The morphology and composition physicochemical characterisation of the phosphate layer exhibit aggregates of crystalline nanoparticles with interstitial mesoporous and macroporous networks with a mole composition ratio of 9.42: 1.0: 8.14 for Ni: P: O respectively. The electrochemical measurements revealed the NiPO/NF anodized at 10 V exhibits a superior electroactive surface area of 255 cm<sup>2</sup>, a substantially higher urea oxidation current compared to pristine NF, achieving 20 and 500 mA/cm<sup>2</sup> at 1.35 and 1.6 V vs. RHE respectively and retained 100 % of activity during the urea electrolysis for more than 3 h. The electrochemical impedance analysis confirmed the alkaline urea oxidation reaction proceeded via indirect (EC) and direct mechanism and the CO<sub>2</sub> intermediates adsorption–desorption became the predominant reaction at more positive potential. The NiPO/NF anode employed in an H-shape can deliver up to ±400 mA/cm<sup>2</sup> for UOR/HER at a bias potential of 1.85 V and 8-fold (2.0 mmol/min) much higher hydrogen production rate compared to the pristine NF anode (0.25 mmol/min). Combining commercial nickel foam modification via anodizing and alkaline urea electrolysis at ambient conditions offers a unique and innovative solution for both large-scale hydrogen green production as well as remedy of the urinated wastewater for a more sustainable future.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 5","pages":"Article 101913"},"PeriodicalIF":5.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S131961032400108X/pdfft?md5=1bd07d969e0bdd8d9088be4f4a1c555e&pid=1-s2.0-S131961032400108X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modification of nickel foam with nickel phosphate catalyst layer via anodizing for boosting the electrocatalytic urea oxidation and hydrogen evolution reactions\",\"authors\":\"Mohamed A. Ghanem,&nbsp;Abdullah M. Al-Mayouf,&nbsp;Mohamed O. Abdulkader,&nbsp;Khalaf A. Alfudhayli\",\"doi\":\"10.1016/j.jscs.2024.101913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) are the key processes for implementing urinated water electrolysis and hydrogen green production, respectively. This contribution investigates the modification of commercial nickel foam (NF) with a nickel phosphate (NiPO/NF) heterostructure layer via anodizing in phosphate solution at various potentials (5, 10 and 15 V) as a simple and efficient route to boost the urea-assisted water electrolysis and hydrogen production in alkaline medium. The morphology and composition physicochemical characterisation of the phosphate layer exhibit aggregates of crystalline nanoparticles with interstitial mesoporous and macroporous networks with a mole composition ratio of 9.42: 1.0: 8.14 for Ni: P: O respectively. The electrochemical measurements revealed the NiPO/NF anodized at 10 V exhibits a superior electroactive surface area of 255 cm<sup>2</sup>, a substantially higher urea oxidation current compared to pristine NF, achieving 20 and 500 mA/cm<sup>2</sup> at 1.35 and 1.6 V vs. RHE respectively and retained 100 % of activity during the urea electrolysis for more than 3 h. The electrochemical impedance analysis confirmed the alkaline urea oxidation reaction proceeded via indirect (EC) and direct mechanism and the CO<sub>2</sub> intermediates adsorption–desorption became the predominant reaction at more positive potential. The NiPO/NF anode employed in an H-shape can deliver up to ±400 mA/cm<sup>2</sup> for UOR/HER at a bias potential of 1.85 V and 8-fold (2.0 mmol/min) much higher hydrogen production rate compared to the pristine NF anode (0.25 mmol/min). Combining commercial nickel foam modification via anodizing and alkaline urea electrolysis at ambient conditions offers a unique and innovative solution for both large-scale hydrogen green production as well as remedy of the urinated wastewater for a more sustainable future.</p></div>\",\"PeriodicalId\":16974,\"journal\":{\"name\":\"Journal of Saudi Chemical Society\",\"volume\":\"28 5\",\"pages\":\"Article 101913\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S131961032400108X/pdfft?md5=1bd07d969e0bdd8d9088be4f4a1c555e&pid=1-s2.0-S131961032400108X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Saudi Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S131961032400108X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S131961032400108X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尿素氧化反应(UOR)和氢进化反应(HER)分别是实现尿液电解和绿色制氢的关键过程。本文研究了通过在不同电位(5、10 和 15 V)的磷酸盐溶液中阳极氧化,用磷酸镍(NiPO/NF)异质结构层对商用泡沫镍(NF)进行改性,以此作为在碱性介质中促进尿素辅助水电解和制氢的一种简单而有效的途径。磷酸盐层的形貌和组成理化特征显示出结晶纳米粒子的聚集体以及间隙介孔和大孔网络,Ni.P.O 的摩尔组成比分别为 9.42:1.0:8.14:P: O 的摩尔组成比分别为 9.42:1.0:8.14。电化学测量显示,在 10 V 下阳极氧化的 NiPO/NF 具有 255 cm 的超大电活性表面积,与原始 NF 相比,尿素氧化电流大幅提高,在 1.35 V 和 1.6 V 条件下分别达到 20 mA/cm 和 500 mA/cm vs. RHE。电化学阻抗分析证实,碱性尿素氧化反应通过间接(EC)和直接机制进行,而 CO 中间体的吸附-解吸反应在更正的电位下成为主要反应。与原始 NF 阳极(0.25 mmol/min)相比,采用 H 形的 NiPO/NF 阳极在偏置电位为 1.85 V 时可提供高达 ±400 mA/cm 的 UOR/HER 电流,制氢速率高出 8 倍(2.0 mmol/min)。通过阳极氧化对商用泡沫镍进行改性,并在环境条件下进行碱性尿素电解,为大规模氢气绿色生产和尿废水处理提供了独特的创新解决方案,从而实现更可持续的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modification of nickel foam with nickel phosphate catalyst layer via anodizing for boosting the electrocatalytic urea oxidation and hydrogen evolution reactions

Urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) are the key processes for implementing urinated water electrolysis and hydrogen green production, respectively. This contribution investigates the modification of commercial nickel foam (NF) with a nickel phosphate (NiPO/NF) heterostructure layer via anodizing in phosphate solution at various potentials (5, 10 and 15 V) as a simple and efficient route to boost the urea-assisted water electrolysis and hydrogen production in alkaline medium. The morphology and composition physicochemical characterisation of the phosphate layer exhibit aggregates of crystalline nanoparticles with interstitial mesoporous and macroporous networks with a mole composition ratio of 9.42: 1.0: 8.14 for Ni: P: O respectively. The electrochemical measurements revealed the NiPO/NF anodized at 10 V exhibits a superior electroactive surface area of 255 cm2, a substantially higher urea oxidation current compared to pristine NF, achieving 20 and 500 mA/cm2 at 1.35 and 1.6 V vs. RHE respectively and retained 100 % of activity during the urea electrolysis for more than 3 h. The electrochemical impedance analysis confirmed the alkaline urea oxidation reaction proceeded via indirect (EC) and direct mechanism and the CO2 intermediates adsorption–desorption became the predominant reaction at more positive potential. The NiPO/NF anode employed in an H-shape can deliver up to ±400 mA/cm2 for UOR/HER at a bias potential of 1.85 V and 8-fold (2.0 mmol/min) much higher hydrogen production rate compared to the pristine NF anode (0.25 mmol/min). Combining commercial nickel foam modification via anodizing and alkaline urea electrolysis at ambient conditions offers a unique and innovative solution for both large-scale hydrogen green production as well as remedy of the urinated wastewater for a more sustainable future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Saudi Chemical Society
Journal of Saudi Chemical Society CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
8.90
自引率
1.80%
发文量
120
审稿时长
38 days
期刊介绍: Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to: •Inorganic chemistry •Physical chemistry •Organic chemistry •Analytical chemistry Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信