{"title":"层状双氢氧化物-聚合物基复合材料:储能应用的关键材料","authors":"Jigyasa Pathak, Poonam Singh","doi":"10.1007/s11696-024-03624-x","DOIUrl":null,"url":null,"abstract":"<div><p>In order to overcome burgeoning energy demands along with the ecological crisis caused by dwindling amounts of fossil fuel and increasing levels of carbonaceous emission, there is an immediate need to develop economical, eco-friendly systems for energy applications. To overcome this issue, use of non-carbon materials has been suggested, but their commercial usage is limited due to intermittency and high operational costs. Currently, layered double hydroxides (LDHs) are prospective contenders for energy applications by virtue of unique physicochemical properties and excellent theoretical specific capacitance. Additionally, LDH–polymer matrix composites (PMCs) have also emerged as nexus materials in energy storage sector since they surpass disadvantages of both LDHs and polymers and broaden the horizons for their practical applications. The current review highlights applications of LDH–PMCs as supercapacitors in terms of maximum specific capacitance, energy density, power density, and rate capability along with insights into mechanism of capacitance, thereby outlining their utility in energy storage.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"78 13","pages":"7375 - 7393"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layered double hydroxides–polymer matrix composites: nexus materials for energy storage applications\",\"authors\":\"Jigyasa Pathak, Poonam Singh\",\"doi\":\"10.1007/s11696-024-03624-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to overcome burgeoning energy demands along with the ecological crisis caused by dwindling amounts of fossil fuel and increasing levels of carbonaceous emission, there is an immediate need to develop economical, eco-friendly systems for energy applications. To overcome this issue, use of non-carbon materials has been suggested, but their commercial usage is limited due to intermittency and high operational costs. Currently, layered double hydroxides (LDHs) are prospective contenders for energy applications by virtue of unique physicochemical properties and excellent theoretical specific capacitance. Additionally, LDH–polymer matrix composites (PMCs) have also emerged as nexus materials in energy storage sector since they surpass disadvantages of both LDHs and polymers and broaden the horizons for their practical applications. The current review highlights applications of LDH–PMCs as supercapacitors in terms of maximum specific capacitance, energy density, power density, and rate capability along with insights into mechanism of capacitance, thereby outlining their utility in energy storage.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":513,\"journal\":{\"name\":\"Chemical Papers\",\"volume\":\"78 13\",\"pages\":\"7375 - 7393\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Papers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11696-024-03624-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03624-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Layered double hydroxides–polymer matrix composites: nexus materials for energy storage applications
In order to overcome burgeoning energy demands along with the ecological crisis caused by dwindling amounts of fossil fuel and increasing levels of carbonaceous emission, there is an immediate need to develop economical, eco-friendly systems for energy applications. To overcome this issue, use of non-carbon materials has been suggested, but their commercial usage is limited due to intermittency and high operational costs. Currently, layered double hydroxides (LDHs) are prospective contenders for energy applications by virtue of unique physicochemical properties and excellent theoretical specific capacitance. Additionally, LDH–polymer matrix composites (PMCs) have also emerged as nexus materials in energy storage sector since they surpass disadvantages of both LDHs and polymers and broaden the horizons for their practical applications. The current review highlights applications of LDH–PMCs as supercapacitors in terms of maximum specific capacitance, energy density, power density, and rate capability along with insights into mechanism of capacitance, thereby outlining their utility in energy storage.
Chemical PapersChemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.