Jiayan Yang, Yuanyuan Liu, Jing Wu, Tian Lang, Jie Chen, Yao Liu, Qingqing Qiu, Tongxiang Liang, Jinming Zeng
{"title":"十二烷基硫酸钠辅助合成用于高效降解有机污染物的 BiOBr/氧化石墨烯光催化剂","authors":"Jiayan Yang, Yuanyuan Liu, Jing Wu, Tian Lang, Jie Chen, Yao Liu, Qingqing Qiu, Tongxiang Liang, Jinming Zeng","doi":"10.1002/aoc.7662","DOIUrl":null,"url":null,"abstract":"<p>Surfactant-assisted synthesis of photocatalysts for water treatment has received extensive attention from researchers. In this paper, a novel and efficient BiOBr/graphene oxide (BiOBr/GO) photocatalyst assisted by sodium dodecyl sulfate (SDS) was synthesized by a simple solvothermal method. Compared with use of other surfactants, like polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB), BiOBr/GO (SDS) shows outstanding photocatalytic degradation activity under optimal conditions: The degradation rate constants of BiOBr/GO (SDS) for oxytetracycline (OTC), tetracycline hydrochloride (TCH), brilliant blue (BB), and Rhodamine B (RhB) are 0.073, 0.057, 0.166, and 0.626 min<sup>−1</sup>, which are 2.8, 1.8, 9, and 1.5 times larger than pure BiOBr, respectively. In addition, after five cycles, BiOBr/GO (SDS) exhibits superior cycling stability. The enhanced photocatalytic performance can benefit from the introduction of SDS and GO. With the assistance of SDS in the preparation process, BiOBr/GO (SDS) nanosheets have good adsorption performance and dispersion effect, which is favorable for raising their specific surface area. Meanwhile, the electron capture effect of GO improves the transfer and separation efficiency of photogenerated carriers. Moreover, the possible degradation pathway for TCH is identified through liquid chromatography–mass spectrometry (LC–MS). This research can become a valuable reference for synthesizing photocatalysts with visible light response to degrading organic pollutants such as antibiotics and dyes.</p>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"38 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of BiOBr/graphene oxide photocatalyst assisted by sodium dodecyl sulfate for efficient degradation of organic pollutants\",\"authors\":\"Jiayan Yang, Yuanyuan Liu, Jing Wu, Tian Lang, Jie Chen, Yao Liu, Qingqing Qiu, Tongxiang Liang, Jinming Zeng\",\"doi\":\"10.1002/aoc.7662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Surfactant-assisted synthesis of photocatalysts for water treatment has received extensive attention from researchers. In this paper, a novel and efficient BiOBr/graphene oxide (BiOBr/GO) photocatalyst assisted by sodium dodecyl sulfate (SDS) was synthesized by a simple solvothermal method. Compared with use of other surfactants, like polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB), BiOBr/GO (SDS) shows outstanding photocatalytic degradation activity under optimal conditions: The degradation rate constants of BiOBr/GO (SDS) for oxytetracycline (OTC), tetracycline hydrochloride (TCH), brilliant blue (BB), and Rhodamine B (RhB) are 0.073, 0.057, 0.166, and 0.626 min<sup>−1</sup>, which are 2.8, 1.8, 9, and 1.5 times larger than pure BiOBr, respectively. In addition, after five cycles, BiOBr/GO (SDS) exhibits superior cycling stability. The enhanced photocatalytic performance can benefit from the introduction of SDS and GO. With the assistance of SDS in the preparation process, BiOBr/GO (SDS) nanosheets have good adsorption performance and dispersion effect, which is favorable for raising their specific surface area. Meanwhile, the electron capture effect of GO improves the transfer and separation efficiency of photogenerated carriers. Moreover, the possible degradation pathway for TCH is identified through liquid chromatography–mass spectrometry (LC–MS). This research can become a valuable reference for synthesizing photocatalysts with visible light response to degrading organic pollutants such as antibiotics and dyes.</p>\",\"PeriodicalId\":8344,\"journal\":{\"name\":\"Applied Organometallic Chemistry\",\"volume\":\"38 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7662\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7662","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Synthesis of BiOBr/graphene oxide photocatalyst assisted by sodium dodecyl sulfate for efficient degradation of organic pollutants
Surfactant-assisted synthesis of photocatalysts for water treatment has received extensive attention from researchers. In this paper, a novel and efficient BiOBr/graphene oxide (BiOBr/GO) photocatalyst assisted by sodium dodecyl sulfate (SDS) was synthesized by a simple solvothermal method. Compared with use of other surfactants, like polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB), BiOBr/GO (SDS) shows outstanding photocatalytic degradation activity under optimal conditions: The degradation rate constants of BiOBr/GO (SDS) for oxytetracycline (OTC), tetracycline hydrochloride (TCH), brilliant blue (BB), and Rhodamine B (RhB) are 0.073, 0.057, 0.166, and 0.626 min−1, which are 2.8, 1.8, 9, and 1.5 times larger than pure BiOBr, respectively. In addition, after five cycles, BiOBr/GO (SDS) exhibits superior cycling stability. The enhanced photocatalytic performance can benefit from the introduction of SDS and GO. With the assistance of SDS in the preparation process, BiOBr/GO (SDS) nanosheets have good adsorption performance and dispersion effect, which is favorable for raising their specific surface area. Meanwhile, the electron capture effect of GO improves the transfer and separation efficiency of photogenerated carriers. Moreover, the possible degradation pathway for TCH is identified through liquid chromatography–mass spectrometry (LC–MS). This research can become a valuable reference for synthesizing photocatalysts with visible light response to degrading organic pollutants such as antibiotics and dyes.
期刊介绍:
All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.