一种能够消除等离子体形态影响以提高 LIBS 性能的新型光谱标准化方法

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL
Deng Zhang, Zili Chen, Junfei Nie, Yanwu Chu and Lianbo Guo
{"title":"一种能够消除等离子体形态影响以提高 LIBS 性能的新型光谱标准化方法","authors":"Deng Zhang, Zili Chen, Junfei Nie, Yanwu Chu and Lianbo Guo","doi":"10.1039/D4JA00203B","DOIUrl":null,"url":null,"abstract":"<p >The poor spectral stability of laser-induced breakdown spectroscopy (LIBS) seriously affects its analytical performance, which is a key obstacle to its further development. To overcome this challenge, an improved spectral standardization method based on plasma image-spectrum fusion (ISS-PISF) was proposed in this study. This method, for the first time, considers and quantifies the influence of plasma morphology on spectral intensity based on the line-integrated intensity formula of LIBS spectra. It recognizes that the spectral fluctuations mainly stem from variations in total number density, plasma temperature, electron number density, and plasma morphology. Therefore, ISS-PISF innovatively utilizes easily accessible features from plasma images and spectra to eliminate the influence of these four plasma parameters, thereby improving the spectral stability and analytical performance of LIBS. To validate the effectiveness of this method, the spectra of aluminum alloy samples obtained under complex detection conditions simulated by varying laser energy and defocusing amount were analyzed. After correction by ISS-PISF, the <em>R</em><small><sup>2</sup></small> for Mg I 516.73 nm, Mn II 294.92 nm, and Si I 288.16 nm improved to 0.990, 0.976, and 0.961, and the average RMSE of the validation set decreased by 46.154%, while the average STD of the validation set decreased by 37.405%. These experimental results indicate that this study provides a simple, effective, and physically supported spectral standardization method, which contributes to the further promotion and application of LIBS.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 10","pages":" 2402-2408"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel spectral standardization method capable of eliminating the influence of plasma morphology to improve LIBS performance\",\"authors\":\"Deng Zhang, Zili Chen, Junfei Nie, Yanwu Chu and Lianbo Guo\",\"doi\":\"10.1039/D4JA00203B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The poor spectral stability of laser-induced breakdown spectroscopy (LIBS) seriously affects its analytical performance, which is a key obstacle to its further development. To overcome this challenge, an improved spectral standardization method based on plasma image-spectrum fusion (ISS-PISF) was proposed in this study. This method, for the first time, considers and quantifies the influence of plasma morphology on spectral intensity based on the line-integrated intensity formula of LIBS spectra. It recognizes that the spectral fluctuations mainly stem from variations in total number density, plasma temperature, electron number density, and plasma morphology. Therefore, ISS-PISF innovatively utilizes easily accessible features from plasma images and spectra to eliminate the influence of these four plasma parameters, thereby improving the spectral stability and analytical performance of LIBS. To validate the effectiveness of this method, the spectra of aluminum alloy samples obtained under complex detection conditions simulated by varying laser energy and defocusing amount were analyzed. After correction by ISS-PISF, the <em>R</em><small><sup>2</sup></small> for Mg I 516.73 nm, Mn II 294.92 nm, and Si I 288.16 nm improved to 0.990, 0.976, and 0.961, and the average RMSE of the validation set decreased by 46.154%, while the average STD of the validation set decreased by 37.405%. These experimental results indicate that this study provides a simple, effective, and physically supported spectral standardization method, which contributes to the further promotion and application of LIBS.</p>\",\"PeriodicalId\":81,\"journal\":{\"name\":\"Journal of Analytical Atomic Spectrometry\",\"volume\":\" 10\",\"pages\":\" 2402-2408\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Atomic Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ja/d4ja00203b\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ja/d4ja00203b","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

激光诱导击穿光谱(LIBS)光谱稳定性差,严重影响了其分析性能,这是其进一步发展的关键障碍。为了克服这一难题,本研究提出了一种基于等离子体图像-光谱融合(ISS-PISF)的改进光谱标准化方法。该方法基于 LIBS 光谱的线积分强度公式,首次考虑并量化了等离子体形态对光谱强度的影响。它认识到光谱波动主要源于总数量密度、等离子体温度、电子数量密度和等离子体形态的变化。因此,ISS-PISF 创新性地利用了等离子体图像和光谱中易于获取的特征,消除了这四个等离子体参数的影响,从而提高了 LIBS 的光谱稳定性和分析性能。为了验证这种方法的有效性,我们分析了在复杂检测条件下通过改变激光能量和散焦量模拟获得的铝合金样品光谱。经 ISS-PISF 校正后,Mg I 516.73 nm、Mn II 294.92 nm 和 Si I 288.16 nm 的 R2 分别提高到 0.990、0.976 和 0.961,验证集的平均 RMSE 降低了 46.154%,验证集的平均 STD 降低了 37.405%。这些实验结果表明,本研究提供了一种简单、有效且有物理支持的光谱标准化方法,有助于 LIBS 的进一步推广和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel spectral standardization method capable of eliminating the influence of plasma morphology to improve LIBS performance

A novel spectral standardization method capable of eliminating the influence of plasma morphology to improve LIBS performance

The poor spectral stability of laser-induced breakdown spectroscopy (LIBS) seriously affects its analytical performance, which is a key obstacle to its further development. To overcome this challenge, an improved spectral standardization method based on plasma image-spectrum fusion (ISS-PISF) was proposed in this study. This method, for the first time, considers and quantifies the influence of plasma morphology on spectral intensity based on the line-integrated intensity formula of LIBS spectra. It recognizes that the spectral fluctuations mainly stem from variations in total number density, plasma temperature, electron number density, and plasma morphology. Therefore, ISS-PISF innovatively utilizes easily accessible features from plasma images and spectra to eliminate the influence of these four plasma parameters, thereby improving the spectral stability and analytical performance of LIBS. To validate the effectiveness of this method, the spectra of aluminum alloy samples obtained under complex detection conditions simulated by varying laser energy and defocusing amount were analyzed. After correction by ISS-PISF, the R2 for Mg I 516.73 nm, Mn II 294.92 nm, and Si I 288.16 nm improved to 0.990, 0.976, and 0.961, and the average RMSE of the validation set decreased by 46.154%, while the average STD of the validation set decreased by 37.405%. These experimental results indicate that this study provides a simple, effective, and physically supported spectral standardization method, which contributes to the further promotion and application of LIBS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
26.50%
发文量
228
审稿时长
1.7 months
期刊介绍: Innovative research on the fundamental theory and application of spectrometric techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信