BIDSAlign:用于自动合并和预处理多个脑电图库的库。

Andrea Zanola, Federico Del Pup, Camillo Porcaro, Manfredo Atzori
{"title":"BIDSAlign:用于自动合并和预处理多个脑电图库的库。","authors":"Andrea Zanola, Federico Del Pup, Camillo Porcaro, Manfredo Atzori","doi":"10.1088/1741-2552/ad6a8c","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>This study aims to address the challenges associated with data-driven electroencephalography (EEG) data analysis by introducing a standardised library called<i>BIDSAlign</i>. This library efficiently processes and merges heterogeneous EEG datasets from different sources into a common standard template. The goal of this work is to create an environment that allows to preprocess public datasets in order to provide data for the effective training of deep learning (DL) architectures.<i>Approach.</i>The library can handle both Brain Imaging Data Structure (BIDS) and non-BIDS datasets, allowing the user to easily preprocess multiple public datasets. It unifies the EEG recordings acquired with different settings by defining a common pipeline and a specified channel template. An array of visualisation functions is provided inside the library, together with a user-friendly graphical user interface to assist non-expert users throughout the workflow.<i>Main results.</i>BIDSAlign enables the effective use of public EEG datasets, providing valuable medical insights, even for non-experts in the field. Results from applying the library to datasets from OpenNeuro demonstrate its ability to extract significant medical knowledge through an end-to-end workflow, facilitating group analysis, visual comparison and statistical testing.<i>Significance.</i>BIDSAlign solves the lack of large EEG datasets by aligning multiple datasets to a standard template. This unlocks the potential of public EEG data for training DL models. It paves the way to promising contributions based on DL to clinical and non-clinical EEG research, offering insights that can inform neurological disease diagnosis and treatment strategies.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>BIDSAlign</i>: a library for automatic merging and preprocessing of multiple EEG repositories.\",\"authors\":\"Andrea Zanola, Federico Del Pup, Camillo Porcaro, Manfredo Atzori\",\"doi\":\"10.1088/1741-2552/ad6a8c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>This study aims to address the challenges associated with data-driven electroencephalography (EEG) data analysis by introducing a standardised library called<i>BIDSAlign</i>. This library efficiently processes and merges heterogeneous EEG datasets from different sources into a common standard template. The goal of this work is to create an environment that allows to preprocess public datasets in order to provide data for the effective training of deep learning (DL) architectures.<i>Approach.</i>The library can handle both Brain Imaging Data Structure (BIDS) and non-BIDS datasets, allowing the user to easily preprocess multiple public datasets. It unifies the EEG recordings acquired with different settings by defining a common pipeline and a specified channel template. An array of visualisation functions is provided inside the library, together with a user-friendly graphical user interface to assist non-expert users throughout the workflow.<i>Main results.</i>BIDSAlign enables the effective use of public EEG datasets, providing valuable medical insights, even for non-experts in the field. Results from applying the library to datasets from OpenNeuro demonstrate its ability to extract significant medical knowledge through an end-to-end workflow, facilitating group analysis, visual comparison and statistical testing.<i>Significance.</i>BIDSAlign solves the lack of large EEG datasets by aligning multiple datasets to a standard template. This unlocks the potential of public EEG data for training DL models. It paves the way to promising contributions based on DL to clinical and non-clinical EEG research, offering insights that can inform neurological disease diagnosis and treatment strategies.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ad6a8c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad6a8c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究目的本研究旨在通过引入一个名为 BIDSAlign 的标准化库,解决与数据驱动脑电图(EEG)数据分析相关的挑战。该库可有效处理不同来源的异构脑电图数据集,并将其合并到一个通用的标准模板中。这项工作的目标是创建一个环境,允许对公共数据集进行预处理,以便为深度学习架构的有效训练提供数据。该库可以处理 BIDS(脑成像数据结构)和非 BIDS 数据集,让用户可以轻松预处理多个公共数据集。它通过定义通用管道和指定通道模板,统一了以不同设置获取的脑电图记录。库中提供了一系列可视化功能,以及用户友好的图形用户界面,可在整个工作流程中为非专业用户提供帮助。BIDSAlign 能够有效利用公共脑电图数据集,即使是该领域的非专业人员也能获得有价值的医学见解。将该库应用于 OpenNeuro 数据集的结果表明,它能够通过端到端工作流程提取重要的医学知识,促进分组分析、可视化比较和统计测试。BIDSAlign 通过将多个数据集与标准模板对齐,解决了缺乏大型脑电图数据集的问题。这释放了公共脑电图数据在训练深度学习模型方面的潜力。它为基于深度学习的临床和非临床脑电图研究铺平了道路,为神经疾病诊断和治疗策略提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BIDSAlign: a library for automatic merging and preprocessing of multiple EEG repositories.

Objective.This study aims to address the challenges associated with data-driven electroencephalography (EEG) data analysis by introducing a standardised library calledBIDSAlign. This library efficiently processes and merges heterogeneous EEG datasets from different sources into a common standard template. The goal of this work is to create an environment that allows to preprocess public datasets in order to provide data for the effective training of deep learning (DL) architectures.Approach.The library can handle both Brain Imaging Data Structure (BIDS) and non-BIDS datasets, allowing the user to easily preprocess multiple public datasets. It unifies the EEG recordings acquired with different settings by defining a common pipeline and a specified channel template. An array of visualisation functions is provided inside the library, together with a user-friendly graphical user interface to assist non-expert users throughout the workflow.Main results.BIDSAlign enables the effective use of public EEG datasets, providing valuable medical insights, even for non-experts in the field. Results from applying the library to datasets from OpenNeuro demonstrate its ability to extract significant medical knowledge through an end-to-end workflow, facilitating group analysis, visual comparison and statistical testing.Significance.BIDSAlign solves the lack of large EEG datasets by aligning multiple datasets to a standard template. This unlocks the potential of public EEG data for training DL models. It paves the way to promising contributions based on DL to clinical and non-clinical EEG research, offering insights that can inform neurological disease diagnosis and treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信