{"title":"一项初步研究,探索经皮脊髓刺激对截肢者脊髓兴奋性和幻肢痛的影响。","authors":"Ashley N Dalrymple, Lee E Fisher, Douglas J Weber","doi":"10.1088/1741-2552/ad6a8d","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Phantom limb pain (PLP) is debilitating and affects over 70% of people with lower-limb amputation. Other neuropathic pain conditions correspond with increased spinal excitability, which can be measured using reflexes and<i>F</i>-waves. Spinal cord neuromodulation can be used to reduce neuropathic pain in a variety of conditions and may affect spinal excitability, but has not been extensively used for treating PLP. Here, we propose using a non-invasive neuromodulation method, transcutaneous spinal cord stimulation (tSCS), to reduce PLP and modulate spinal excitability after transtibial amputation.<i>Approach</i>. We recruited three participants, two males (5- and 9-years post-amputation, traumatic and alcohol-induced neuropathy) and one female (3 months post-amputation, diabetic neuropathy) for this 5 d study. We measured pain using the McGill Pain Questionnaire (MPQ), visual analog scale (VAS), and pain pressure threshold (PPT) test. We measured spinal reflex and motoneuron excitability using posterior root-muscle (PRM) reflexes and<i>F</i>-waves, respectively. We delivered tSCS for 30 min d<sup>-1</sup>for 5 d.<i>Main Results</i>. After 5 d of tSCS, MPQ scores decreased by clinically-meaningful amounts for all participants from 34.0 ± 7.0-18.3 ± 6.8; however, there were no clinically-significant decreases in VAS scores. Two participants had increased PPTs across the residual limb (Day 1: 5.4 ± 1.6 lbf; Day 5: 11.4 ± 1.0 lbf).<i>F</i>-waves had normal latencies but small amplitudes. PRM reflexes had high thresholds (59.5 ± 6.1<i>μ</i>C) and low amplitudes, suggesting that in PLP, the spinal cord is hypoexcitable. After 5 d of tSCS, reflex thresholds decreased significantly (38.6 ± 12.2<i>μ</i>C;<i>p</i>< 0.001).<i>Significance</i>. These preliminary results in this non-placebo-controlled study suggest that, overall, limb amputation and PLP may be associated with reduced spinal excitability and tSCS can increase spinal excitability and reduce PLP.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391861/pdf/","citationCount":"0","resultStr":"{\"title\":\"A preliminary study exploring the effects of transcutaneous spinal cord stimulation on spinal excitability and phantom limb pain in people with a transtibial amputation.\",\"authors\":\"Ashley N Dalrymple, Lee E Fisher, Douglas J Weber\",\"doi\":\"10.1088/1741-2552/ad6a8d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Phantom limb pain (PLP) is debilitating and affects over 70% of people with lower-limb amputation. Other neuropathic pain conditions correspond with increased spinal excitability, which can be measured using reflexes and<i>F</i>-waves. Spinal cord neuromodulation can be used to reduce neuropathic pain in a variety of conditions and may affect spinal excitability, but has not been extensively used for treating PLP. Here, we propose using a non-invasive neuromodulation method, transcutaneous spinal cord stimulation (tSCS), to reduce PLP and modulate spinal excitability after transtibial amputation.<i>Approach</i>. We recruited three participants, two males (5- and 9-years post-amputation, traumatic and alcohol-induced neuropathy) and one female (3 months post-amputation, diabetic neuropathy) for this 5 d study. We measured pain using the McGill Pain Questionnaire (MPQ), visual analog scale (VAS), and pain pressure threshold (PPT) test. We measured spinal reflex and motoneuron excitability using posterior root-muscle (PRM) reflexes and<i>F</i>-waves, respectively. We delivered tSCS for 30 min d<sup>-1</sup>for 5 d.<i>Main Results</i>. After 5 d of tSCS, MPQ scores decreased by clinically-meaningful amounts for all participants from 34.0 ± 7.0-18.3 ± 6.8; however, there were no clinically-significant decreases in VAS scores. Two participants had increased PPTs across the residual limb (Day 1: 5.4 ± 1.6 lbf; Day 5: 11.4 ± 1.0 lbf).<i>F</i>-waves had normal latencies but small amplitudes. PRM reflexes had high thresholds (59.5 ± 6.1<i>μ</i>C) and low amplitudes, suggesting that in PLP, the spinal cord is hypoexcitable. After 5 d of tSCS, reflex thresholds decreased significantly (38.6 ± 12.2<i>μ</i>C;<i>p</i>< 0.001).<i>Significance</i>. These preliminary results in this non-placebo-controlled study suggest that, overall, limb amputation and PLP may be associated with reduced spinal excitability and tSCS can increase spinal excitability and reduce PLP.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ad6a8d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad6a8d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A preliminary study exploring the effects of transcutaneous spinal cord stimulation on spinal excitability and phantom limb pain in people with a transtibial amputation.
Objective. Phantom limb pain (PLP) is debilitating and affects over 70% of people with lower-limb amputation. Other neuropathic pain conditions correspond with increased spinal excitability, which can be measured using reflexes andF-waves. Spinal cord neuromodulation can be used to reduce neuropathic pain in a variety of conditions and may affect spinal excitability, but has not been extensively used for treating PLP. Here, we propose using a non-invasive neuromodulation method, transcutaneous spinal cord stimulation (tSCS), to reduce PLP and modulate spinal excitability after transtibial amputation.Approach. We recruited three participants, two males (5- and 9-years post-amputation, traumatic and alcohol-induced neuropathy) and one female (3 months post-amputation, diabetic neuropathy) for this 5 d study. We measured pain using the McGill Pain Questionnaire (MPQ), visual analog scale (VAS), and pain pressure threshold (PPT) test. We measured spinal reflex and motoneuron excitability using posterior root-muscle (PRM) reflexes andF-waves, respectively. We delivered tSCS for 30 min d-1for 5 d.Main Results. After 5 d of tSCS, MPQ scores decreased by clinically-meaningful amounts for all participants from 34.0 ± 7.0-18.3 ± 6.8; however, there were no clinically-significant decreases in VAS scores. Two participants had increased PPTs across the residual limb (Day 1: 5.4 ± 1.6 lbf; Day 5: 11.4 ± 1.0 lbf).F-waves had normal latencies but small amplitudes. PRM reflexes had high thresholds (59.5 ± 6.1μC) and low amplitudes, suggesting that in PLP, the spinal cord is hypoexcitable. After 5 d of tSCS, reflex thresholds decreased significantly (38.6 ± 12.2μC;p< 0.001).Significance. These preliminary results in this non-placebo-controlled study suggest that, overall, limb amputation and PLP may be associated with reduced spinal excitability and tSCS can increase spinal excitability and reduce PLP.