热杀死的益生菌Levilactobacillus brevis MKAK9及其外多糖通过调节衰老标志和增强优雅鼠的免疫反应促进长寿。

IF 5.2 2区 医学 Q1 GERIATRICS & GERONTOLOGY
Arun Kumar, Manti Kumar Saha, Vipin Kumar, Anupam Bhattacharya, Sagar Barge, Ashis K Mukherjee, Mohan C Kalita, Mojibur R Khan
{"title":"热杀死的益生菌Levilactobacillus brevis MKAK9及其外多糖通过调节衰老标志和增强优雅鼠的免疫反应促进长寿。","authors":"Arun Kumar, Manti Kumar Saha, Vipin Kumar, Anupam Bhattacharya, Sagar Barge, Ashis K Mukherjee, Mohan C Kalita, Mojibur R Khan","doi":"10.1186/s12979-024-00457-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Proteostasis is a critical aging hallmark responsible for removing damaged or misfolded proteins and their aggregates by improving proteasomal degradation through the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS). Research on the impact of heat-killed probiotic bacteria and their structural components on aging hallmarks and innate immune responses is scarce, yet enhancing these effects could potentially delay age-related diseases.</p><p><strong>Results: </strong>This study introduces a novel heat-killed Levilactobacillus brevis strain MKAK9 (HK MKAK9), along with its exopolysaccharide (EPS), demonstrating their ability to extend longevity by improving proteostasis and immune responses in wild-type Caenorhabditis elegans. We elucidate the underlying mechanisms through a comprehensive approach involving mRNA- and small RNA sequencing, proteomic analysis, lifespan assays on loss-of-function mutants, and quantitative RT-PCR. Mechanistically, HK MKAK9 and its EPS resulted in downregulation of the insulin-like signaling pathway in a DAF-16-dependent manner, enhancing protein ubiquitination and subsequent proteasomal degradation through activation of the ALP pathway, which is partially mediated by microRNA mir-243. Importantly, autophagosomes engulf ubiquitinylated proteins, as evidenced by increased expression of the autophagy receptor sqst-3, and subsequently fuse with lysosomes, facilitated by increased levels of the lysosome-associated membrane protein (LAMP) lmp-1, suggesting the formation of autolysosomes for degradation of the selected cargo. Moreover, HK MKAK9 and its EPS activated the p38 MAPK pathway and its downstream SKN-1 transcription factor, which are known to regulate genes involved in innate immune response (thn-1, ilys-1, cnc-2, spp-9, spp-21, clec-47, and clec-266) and antioxidation (sod-3 and gst-44), thereby reducing the accumulation of reactive oxygen species (ROS) at both cellular and mitochondrial levels. Notably, SOD-3 emerged as a transcriptional target of both DAF-16 and SKN-1 transcription factors.</p><p><strong>Conclusion: </strong>Our research sets a benchmark for future investigations by demonstrating that heat-killed probiotic and its specific cellular component, EPS, can downregulate the insulin-signaling pathway, potentially improving the autophagy-lysosome pathway (ALP) for degrading ubiquitinylated proteins and promoting organismal longevity. Additionally, we discovered that increased expression of microRNA mir-243 regulates insulin-like signaling and its downstream ALP pathway. Our findings also indicate that postbiotic treatment may bolster antioxidative and innate immune responses, offering a promising avenue for interventions in aging-related diseases.</p>","PeriodicalId":51289,"journal":{"name":"Immunity & Ageing","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295351/pdf/","citationCount":"0","resultStr":"{\"title\":\"Heat-killed probiotic Levilactobacillus brevis MKAK9 and its exopolysaccharide promote longevity by modulating aging hallmarks and enhancing immune responses in Caenorhabditis elegans.\",\"authors\":\"Arun Kumar, Manti Kumar Saha, Vipin Kumar, Anupam Bhattacharya, Sagar Barge, Ashis K Mukherjee, Mohan C Kalita, Mojibur R Khan\",\"doi\":\"10.1186/s12979-024-00457-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Proteostasis is a critical aging hallmark responsible for removing damaged or misfolded proteins and their aggregates by improving proteasomal degradation through the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS). Research on the impact of heat-killed probiotic bacteria and their structural components on aging hallmarks and innate immune responses is scarce, yet enhancing these effects could potentially delay age-related diseases.</p><p><strong>Results: </strong>This study introduces a novel heat-killed Levilactobacillus brevis strain MKAK9 (HK MKAK9), along with its exopolysaccharide (EPS), demonstrating their ability to extend longevity by improving proteostasis and immune responses in wild-type Caenorhabditis elegans. We elucidate the underlying mechanisms through a comprehensive approach involving mRNA- and small RNA sequencing, proteomic analysis, lifespan assays on loss-of-function mutants, and quantitative RT-PCR. Mechanistically, HK MKAK9 and its EPS resulted in downregulation of the insulin-like signaling pathway in a DAF-16-dependent manner, enhancing protein ubiquitination and subsequent proteasomal degradation through activation of the ALP pathway, which is partially mediated by microRNA mir-243. Importantly, autophagosomes engulf ubiquitinylated proteins, as evidenced by increased expression of the autophagy receptor sqst-3, and subsequently fuse with lysosomes, facilitated by increased levels of the lysosome-associated membrane protein (LAMP) lmp-1, suggesting the formation of autolysosomes for degradation of the selected cargo. Moreover, HK MKAK9 and its EPS activated the p38 MAPK pathway and its downstream SKN-1 transcription factor, which are known to regulate genes involved in innate immune response (thn-1, ilys-1, cnc-2, spp-9, spp-21, clec-47, and clec-266) and antioxidation (sod-3 and gst-44), thereby reducing the accumulation of reactive oxygen species (ROS) at both cellular and mitochondrial levels. Notably, SOD-3 emerged as a transcriptional target of both DAF-16 and SKN-1 transcription factors.</p><p><strong>Conclusion: </strong>Our research sets a benchmark for future investigations by demonstrating that heat-killed probiotic and its specific cellular component, EPS, can downregulate the insulin-signaling pathway, potentially improving the autophagy-lysosome pathway (ALP) for degrading ubiquitinylated proteins and promoting organismal longevity. Additionally, we discovered that increased expression of microRNA mir-243 regulates insulin-like signaling and its downstream ALP pathway. Our findings also indicate that postbiotic treatment may bolster antioxidative and innate immune responses, offering a promising avenue for interventions in aging-related diseases.</p>\",\"PeriodicalId\":51289,\"journal\":{\"name\":\"Immunity & Ageing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295351/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunity & Ageing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12979-024-00457-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity & Ageing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12979-024-00457-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:蛋白稳态是一种重要的衰老标志,负责通过自噬-溶酶体途径(ALP)和泛素-蛋白酶体系统(UPS)改善蛋白酶体降解,从而清除受损或折叠错误的蛋白质及其聚集体。有关热处理益生菌及其结构成分对衰老标志和先天性免疫反应的影响的研究还很少,但加强这些作用有可能延缓与年龄有关的疾病:本研究介绍了一种新型的热杀灭左旋乳杆菌菌株MKAK9(HK MKAK9)及其外多糖(EPS),证明它们能够通过改善野生型秀丽隐杆线虫的蛋白稳态和免疫反应来延长其寿命。我们通过涉及 mRNA 和 small RNA 测序、蛋白质组分析、功能缺失突变体寿命测定和定量 RT-PCR 的综合方法阐明了其潜在机制。从机理上讲,HK MKAK9及其EPS以DAF-16依赖的方式导致胰岛素样信号通路下调,通过激活ALP通路增强蛋白质泛素化和随后的蛋白酶体降解,而ALP通路部分由microRNA mir-243介导。重要的是,自噬体吞噬泛素化的蛋白质(自噬受体 sqst-3 的表达增加证明了这一点),随后与溶酶体融合(溶酶体相关膜蛋白(LAMP)lmp-1 水平的增加促进了这种融合),这表明自溶酶体的形成是为了降解所选择的货物。此外,HK MKAK9及其EPS激活了p38 MAPK通路及其下游的SKN-1转录因子,这些因子已知可调控参与先天免疫反应(thn-1、ilys-1、cnc-2、spp-9、spp-21、clec-47和clec-266)和抗氧化(sod-3和gst-44)的基因,从而减少细胞和线粒体水平的活性氧(ROS)积累。值得注意的是,SOD-3 成为 DAF-16 和 SKN-1 转录因子的转录靶标:我们的研究为未来的研究树立了一个标杆,证明了热杀灭益生菌及其特定的细胞成分 EPS 可以下调胰岛素信号通路,从而可能改善自噬-溶酶体通路(ALP)以降解泛素化蛋白质并促进生物体的长寿。此外,我们还发现,microRNA mir-243 的表达增加可调节类胰岛素信号转导及其下游的 ALP 通路。我们的研究结果还表明,后生物治疗可增强抗氧化和先天性免疫反应,为干预与衰老相关的疾病提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat-killed probiotic Levilactobacillus brevis MKAK9 and its exopolysaccharide promote longevity by modulating aging hallmarks and enhancing immune responses in Caenorhabditis elegans.

Background: Proteostasis is a critical aging hallmark responsible for removing damaged or misfolded proteins and their aggregates by improving proteasomal degradation through the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS). Research on the impact of heat-killed probiotic bacteria and their structural components on aging hallmarks and innate immune responses is scarce, yet enhancing these effects could potentially delay age-related diseases.

Results: This study introduces a novel heat-killed Levilactobacillus brevis strain MKAK9 (HK MKAK9), along with its exopolysaccharide (EPS), demonstrating their ability to extend longevity by improving proteostasis and immune responses in wild-type Caenorhabditis elegans. We elucidate the underlying mechanisms through a comprehensive approach involving mRNA- and small RNA sequencing, proteomic analysis, lifespan assays on loss-of-function mutants, and quantitative RT-PCR. Mechanistically, HK MKAK9 and its EPS resulted in downregulation of the insulin-like signaling pathway in a DAF-16-dependent manner, enhancing protein ubiquitination and subsequent proteasomal degradation through activation of the ALP pathway, which is partially mediated by microRNA mir-243. Importantly, autophagosomes engulf ubiquitinylated proteins, as evidenced by increased expression of the autophagy receptor sqst-3, and subsequently fuse with lysosomes, facilitated by increased levels of the lysosome-associated membrane protein (LAMP) lmp-1, suggesting the formation of autolysosomes for degradation of the selected cargo. Moreover, HK MKAK9 and its EPS activated the p38 MAPK pathway and its downstream SKN-1 transcription factor, which are known to regulate genes involved in innate immune response (thn-1, ilys-1, cnc-2, spp-9, spp-21, clec-47, and clec-266) and antioxidation (sod-3 and gst-44), thereby reducing the accumulation of reactive oxygen species (ROS) at both cellular and mitochondrial levels. Notably, SOD-3 emerged as a transcriptional target of both DAF-16 and SKN-1 transcription factors.

Conclusion: Our research sets a benchmark for future investigations by demonstrating that heat-killed probiotic and its specific cellular component, EPS, can downregulate the insulin-signaling pathway, potentially improving the autophagy-lysosome pathway (ALP) for degrading ubiquitinylated proteins and promoting organismal longevity. Additionally, we discovered that increased expression of microRNA mir-243 regulates insulin-like signaling and its downstream ALP pathway. Our findings also indicate that postbiotic treatment may bolster antioxidative and innate immune responses, offering a promising avenue for interventions in aging-related diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Immunity & Ageing
Immunity & Ageing GERIATRICS & GERONTOLOGY-IMMUNOLOGY
CiteScore
10.20
自引率
3.80%
发文量
55
期刊介绍: Immunity & Ageing is a specialist open access journal that was first published in 2004. The journal focuses on the impact of ageing on immune systems, the influence of aged immune systems on organismal well-being and longevity, age-associated diseases with immune etiology, and potential immune interventions to increase health span. All articles published in Immunity & Ageing are indexed in the following databases: Biological Abstracts, BIOSIS, CAS, Citebase, DOAJ, Embase, Google Scholar, Journal Citation Reports/Science Edition, OAIster, PubMed, PubMed Central, Science Citation Index Expanded, SCImago, Scopus, SOCOLAR, and Zetoc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信