拉美裔社区健康研究》/《拉美裔研究》中暴露变量测量不完整的多变量孟德尔随机法。

IF 3.3 Q2 GENETICS & HEREDITY
HGG Advances Pub Date : 2024-10-10 Epub Date: 2024-08-02 DOI:10.1016/j.xhgg.2024.100338
Yilun Li, Kin Yau Wong, Annie Green Howard, Penny Gordon-Larsen, Heather M Highland, Mariaelisa Graff, Kari E North, Carolina G Downie, Christy L Avery, Bing Yu, Kristin L Young, Victoria L Buchanan, Robert Kaplan, Lifang Hou, Brian Thomas Joyce, Qibin Qi, Tamar Sofer, Jee-Young Moon, Dan-Yu Lin
{"title":"拉美裔社区健康研究》/《拉美裔研究》中暴露变量测量不完整的多变量孟德尔随机法。","authors":"Yilun Li, Kin Yau Wong, Annie Green Howard, Penny Gordon-Larsen, Heather M Highland, Mariaelisa Graff, Kari E North, Carolina G Downie, Christy L Avery, Bing Yu, Kristin L Young, Victoria L Buchanan, Robert Kaplan, Lifang Hou, Brian Thomas Joyce, Qibin Qi, Tamar Sofer, Jee-Young Moon, Dan-Yu Lin","doi":"10.1016/j.xhgg.2024.100338","DOIUrl":null,"url":null,"abstract":"<p><p>Multivariable Mendelian randomization allows simultaneous estimation of direct causal effects of multiple exposure variables on an outcome. When the exposure variables of interest are quantitative omic features, obtaining complete data can be economically and technically challenging: the measurement cost is high, and the measurement devices may have inherent detection limits. In this paper, we propose a valid and efficient method to handle unmeasured and undetectable values of the exposure variables in a one-sample multivariable Mendelian randomization analysis with individual-level data. We estimate the direct causal effects with maximum likelihood estimation and develop an expectation-maximization algorithm to compute the estimators. We show the advantages of the proposed method through simulation studies and provide an application to the Hispanic Community Health Study/Study of Latinos, which has a large amount of unmeasured exposure data.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382109/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multivariable Mendelian randomization with incomplete measurements on the exposure variables in the Hispanic Community Health Study/Study of Latinos.\",\"authors\":\"Yilun Li, Kin Yau Wong, Annie Green Howard, Penny Gordon-Larsen, Heather M Highland, Mariaelisa Graff, Kari E North, Carolina G Downie, Christy L Avery, Bing Yu, Kristin L Young, Victoria L Buchanan, Robert Kaplan, Lifang Hou, Brian Thomas Joyce, Qibin Qi, Tamar Sofer, Jee-Young Moon, Dan-Yu Lin\",\"doi\":\"10.1016/j.xhgg.2024.100338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multivariable Mendelian randomization allows simultaneous estimation of direct causal effects of multiple exposure variables on an outcome. When the exposure variables of interest are quantitative omic features, obtaining complete data can be economically and technically challenging: the measurement cost is high, and the measurement devices may have inherent detection limits. In this paper, we propose a valid and efficient method to handle unmeasured and undetectable values of the exposure variables in a one-sample multivariable Mendelian randomization analysis with individual-level data. We estimate the direct causal effects with maximum likelihood estimation and develop an expectation-maximization algorithm to compute the estimators. We show the advantages of the proposed method through simulation studies and provide an application to the Hispanic Community Health Study/Study of Latinos, which has a large amount of unmeasured exposure data.</p>\",\"PeriodicalId\":34530,\"journal\":{\"name\":\"HGG Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382109/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HGG Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xhgg.2024.100338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2024.100338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

多变量孟德尔随机化可以同时估计多个暴露变量对结果的直接因果效应。当感兴趣的暴露变量是定量的 omic 特征时,获取完整的数据在经济和技术上都具有挑战性:测量成本高,测量设备可能有固有的检测极限。在本文中,我们提出了一种有效且高效的方法来处理单样本多变量孟德尔随机分析中暴露变量的未测量值和不可检测值。我们用最大似然估计法估计直接因果效应,并开发了一种期望最大化算法来计算估计值。我们通过模拟研究展示了所提方法的优势,并将其应用于西班牙裔社区健康研究/拉美裔研究,该研究拥有大量未测量的暴露数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariable Mendelian randomization with incomplete measurements on the exposure variables in the Hispanic Community Health Study/Study of Latinos.

Multivariable Mendelian randomization allows simultaneous estimation of direct causal effects of multiple exposure variables on an outcome. When the exposure variables of interest are quantitative omic features, obtaining complete data can be economically and technically challenging: the measurement cost is high, and the measurement devices may have inherent detection limits. In this paper, we propose a valid and efficient method to handle unmeasured and undetectable values of the exposure variables in a one-sample multivariable Mendelian randomization analysis with individual-level data. We estimate the direct causal effects with maximum likelihood estimation and develop an expectation-maximization algorithm to compute the estimators. We show the advantages of the proposed method through simulation studies and provide an application to the Hispanic Community Health Study/Study of Latinos, which has a large amount of unmeasured exposure data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信