Aline Gonçalves, Francisca Monteiro, Sara Brantuas, Priscilla Basset, Alejandro Estevez, Filipe S Silva, Teresa Pinho
{"title":"关于光生物调制在牙齿矫正中的生物效应和移动相关影响的临床和临床前证据:系统综述。","authors":"Aline Gonçalves, Francisca Monteiro, Sara Brantuas, Priscilla Basset, Alejandro Estevez, Filipe S Silva, Teresa Pinho","doi":"10.1111/ocr.12841","DOIUrl":null,"url":null,"abstract":"<p><p>Photobiomodulation (PBM) has been demonstrated as a non-invasive and painless technique with great potential to accelerate orthodontic tooth movement (OTM). However, there is a great inconsistency among PBM protocols and reported outcomes, probably due to the poor translatability of preclinical knowledge into early clinical practice. Hence, this review aims to fill this gap by establishing the state-of-the-art on both preclinical and clinical applications of PBM, and by comprehensively discussing the most suitable stimulation protocols described in the literature. This review was conducted according to PRISMA guidelines. A bibliographic search was carried out in the PubMed, Scopus and Cochrane databases using a combination of keywords. Only studies written in English were eligible and no time limit was applied. A total of 69 studies were selected for this review. The revised literature describes that PBM can effectively reduce orthodontic treatment time and produce analgesic and anti-inflammatory effects. We found that PBM of 640 ± 25, 830 ± 20 and 960 ± 20 nm, delivered at a minimum energy density per irradiation point of 5 J/cm<sup>2</sup> daily or every other day sessions is robustly associated with increased tooth movement rate. Pain relief seems to be achieved with lower irradiation doses compared to those required for OTM acceleration. For the first time, the bioeffects induced by PBM for the acceleration of OTM are comprehensively discussed from a translational point of view. Collectively, the evidence from preclinical and clinical trials supports the use of PBM as a coadjuvant in orthodontics for enhancing tooth movement and managing treatment-associated discomfort. Overall, the revised studies indicate that optimal PBM parameters to stimulate tissue remodelling are wavelengths of 830 ± 20 nm and energy densities of 5-70 J/cm<sup>2</sup> applied daily or every other day can maximize the OTM rate, while lower doses (up to 16 J/cm<sup>2</sup> per session) delivered in non-consecutive days seem to be optimal for inducing analgesic effects. Future research should focus on optimizing laser parameters and treatment protocols customized for tooth and movement type. By fine-tuning laser parameters, clinicians can potentially reduce treatment times, improve patient comfort and achieve more predictable outcomes, making orthodontic care more efficient and patient-friendly, thus consolidating PBM usage in orthodontics.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical and preclinical evidence on the bioeffects and movement-related implications of photobiomodulation in the orthodontic tooth movement: A systematic review.\",\"authors\":\"Aline Gonçalves, Francisca Monteiro, Sara Brantuas, Priscilla Basset, Alejandro Estevez, Filipe S Silva, Teresa Pinho\",\"doi\":\"10.1111/ocr.12841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photobiomodulation (PBM) has been demonstrated as a non-invasive and painless technique with great potential to accelerate orthodontic tooth movement (OTM). However, there is a great inconsistency among PBM protocols and reported outcomes, probably due to the poor translatability of preclinical knowledge into early clinical practice. Hence, this review aims to fill this gap by establishing the state-of-the-art on both preclinical and clinical applications of PBM, and by comprehensively discussing the most suitable stimulation protocols described in the literature. This review was conducted according to PRISMA guidelines. A bibliographic search was carried out in the PubMed, Scopus and Cochrane databases using a combination of keywords. Only studies written in English were eligible and no time limit was applied. A total of 69 studies were selected for this review. The revised literature describes that PBM can effectively reduce orthodontic treatment time and produce analgesic and anti-inflammatory effects. We found that PBM of 640 ± 25, 830 ± 20 and 960 ± 20 nm, delivered at a minimum energy density per irradiation point of 5 J/cm<sup>2</sup> daily or every other day sessions is robustly associated with increased tooth movement rate. Pain relief seems to be achieved with lower irradiation doses compared to those required for OTM acceleration. For the first time, the bioeffects induced by PBM for the acceleration of OTM are comprehensively discussed from a translational point of view. Collectively, the evidence from preclinical and clinical trials supports the use of PBM as a coadjuvant in orthodontics for enhancing tooth movement and managing treatment-associated discomfort. Overall, the revised studies indicate that optimal PBM parameters to stimulate tissue remodelling are wavelengths of 830 ± 20 nm and energy densities of 5-70 J/cm<sup>2</sup> applied daily or every other day can maximize the OTM rate, while lower doses (up to 16 J/cm<sup>2</sup> per session) delivered in non-consecutive days seem to be optimal for inducing analgesic effects. Future research should focus on optimizing laser parameters and treatment protocols customized for tooth and movement type. By fine-tuning laser parameters, clinicians can potentially reduce treatment times, improve patient comfort and achieve more predictable outcomes, making orthodontic care more efficient and patient-friendly, thus consolidating PBM usage in orthodontics.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/ocr.12841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ocr.12841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Clinical and preclinical evidence on the bioeffects and movement-related implications of photobiomodulation in the orthodontic tooth movement: A systematic review.
Photobiomodulation (PBM) has been demonstrated as a non-invasive and painless technique with great potential to accelerate orthodontic tooth movement (OTM). However, there is a great inconsistency among PBM protocols and reported outcomes, probably due to the poor translatability of preclinical knowledge into early clinical practice. Hence, this review aims to fill this gap by establishing the state-of-the-art on both preclinical and clinical applications of PBM, and by comprehensively discussing the most suitable stimulation protocols described in the literature. This review was conducted according to PRISMA guidelines. A bibliographic search was carried out in the PubMed, Scopus and Cochrane databases using a combination of keywords. Only studies written in English were eligible and no time limit was applied. A total of 69 studies were selected for this review. The revised literature describes that PBM can effectively reduce orthodontic treatment time and produce analgesic and anti-inflammatory effects. We found that PBM of 640 ± 25, 830 ± 20 and 960 ± 20 nm, delivered at a minimum energy density per irradiation point of 5 J/cm2 daily or every other day sessions is robustly associated with increased tooth movement rate. Pain relief seems to be achieved with lower irradiation doses compared to those required for OTM acceleration. For the first time, the bioeffects induced by PBM for the acceleration of OTM are comprehensively discussed from a translational point of view. Collectively, the evidence from preclinical and clinical trials supports the use of PBM as a coadjuvant in orthodontics for enhancing tooth movement and managing treatment-associated discomfort. Overall, the revised studies indicate that optimal PBM parameters to stimulate tissue remodelling are wavelengths of 830 ± 20 nm and energy densities of 5-70 J/cm2 applied daily or every other day can maximize the OTM rate, while lower doses (up to 16 J/cm2 per session) delivered in non-consecutive days seem to be optimal for inducing analgesic effects. Future research should focus on optimizing laser parameters and treatment protocols customized for tooth and movement type. By fine-tuning laser parameters, clinicians can potentially reduce treatment times, improve patient comfort and achieve more predictable outcomes, making orthodontic care more efficient and patient-friendly, thus consolidating PBM usage in orthodontics.