{"title":"金钗素以昼夜节律依赖的方式促进白色脂肪组织的脂肪分解。","authors":"","doi":"10.1016/j.jnutbio.2024.109696","DOIUrl":null,"url":null,"abstract":"<div><p>Nobiletin has been reported to protect against obesity-related metabolic disorders by enhancing the circadian rhythm; however its effects on lipid metabolism in adipose tissue are unclear. In this study, mice were fed with high-fat diet (HFD) for four weeks firstly and gavaged with 50 or 200 mg/kg bodyweight/day nobiletin at Zeitgeber time (ZT) 4 for another four weeks while still receiving HFD. At the end of the 8-week experimental period, the mice were sacrificed at ZT4 or ZT8 on the same day. Mature 3T3-L1 adipocytes were treated with nobiletin in the presence or absence of si<em>Bmal1</em>, si<em>Rora</em>, si<em>Rorc</em>, SR8278 or SR9009. Nobiletin reduced the weight of white adipose tissue (WAT) and the size of adipocytes in WAT. At ZT4, nobiletin decreased the TG, TC and LDL-c levels and increased serum FFA level and glucose tolerance. Nobiletin triggered the lipolysis of mesenteric and epididymal WAT at both ZT4 and ZT16. Nobiletin increased the level of RORγ at ZT16, that of BMAL1 and PPARγ at ZT4, and that of ATGL at both ZT4 and ZT16. Nobiletin increased lipolysis and ATGL levels in 3T3-L1 adipocytes in <em>Bmal1-</em> or <em>Rora/c-</em> dependent manner. Dual luciferase assay indicated that nobiletin enhanced the transcriptional activation of RORα/γ on <em>Atgl</em> promoter and decreased the repression of RORα/γ on PPARγ-binding <em>PPRE</em>. Promoter deletion analysis indicated that nobiletin inhibited the suppression of PPARγ-mediated <em>Atgl</em> transcription by RORα/γ. Taken together, nobiletin elevated lipolysis in WAT by increasing ATGL levels through activating the transcriptional activity of RORα/γ and decreasing the repression of RORα/γ on PPARγ-binding <em>PPRE</em>.</p></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nobiletin promotes lipolysis of white adipose tissue in a circadian clock-dependent manner\",\"authors\":\"\",\"doi\":\"10.1016/j.jnutbio.2024.109696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nobiletin has been reported to protect against obesity-related metabolic disorders by enhancing the circadian rhythm; however its effects on lipid metabolism in adipose tissue are unclear. In this study, mice were fed with high-fat diet (HFD) for four weeks firstly and gavaged with 50 or 200 mg/kg bodyweight/day nobiletin at Zeitgeber time (ZT) 4 for another four weeks while still receiving HFD. At the end of the 8-week experimental period, the mice were sacrificed at ZT4 or ZT8 on the same day. Mature 3T3-L1 adipocytes were treated with nobiletin in the presence or absence of si<em>Bmal1</em>, si<em>Rora</em>, si<em>Rorc</em>, SR8278 or SR9009. Nobiletin reduced the weight of white adipose tissue (WAT) and the size of adipocytes in WAT. At ZT4, nobiletin decreased the TG, TC and LDL-c levels and increased serum FFA level and glucose tolerance. Nobiletin triggered the lipolysis of mesenteric and epididymal WAT at both ZT4 and ZT16. Nobiletin increased the level of RORγ at ZT16, that of BMAL1 and PPARγ at ZT4, and that of ATGL at both ZT4 and ZT16. Nobiletin increased lipolysis and ATGL levels in 3T3-L1 adipocytes in <em>Bmal1-</em> or <em>Rora/c-</em> dependent manner. Dual luciferase assay indicated that nobiletin enhanced the transcriptional activation of RORα/γ on <em>Atgl</em> promoter and decreased the repression of RORα/γ on PPARγ-binding <em>PPRE</em>. Promoter deletion analysis indicated that nobiletin inhibited the suppression of PPARγ-mediated <em>Atgl</em> transcription by RORα/γ. Taken together, nobiletin elevated lipolysis in WAT by increasing ATGL levels through activating the transcriptional activity of RORα/γ and decreasing the repression of RORα/γ on PPARγ-binding <em>PPRE</em>.</p></div>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955286324001293\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286324001293","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Nobiletin promotes lipolysis of white adipose tissue in a circadian clock-dependent manner
Nobiletin has been reported to protect against obesity-related metabolic disorders by enhancing the circadian rhythm; however its effects on lipid metabolism in adipose tissue are unclear. In this study, mice were fed with high-fat diet (HFD) for four weeks firstly and gavaged with 50 or 200 mg/kg bodyweight/day nobiletin at Zeitgeber time (ZT) 4 for another four weeks while still receiving HFD. At the end of the 8-week experimental period, the mice were sacrificed at ZT4 or ZT8 on the same day. Mature 3T3-L1 adipocytes were treated with nobiletin in the presence or absence of siBmal1, siRora, siRorc, SR8278 or SR9009. Nobiletin reduced the weight of white adipose tissue (WAT) and the size of adipocytes in WAT. At ZT4, nobiletin decreased the TG, TC and LDL-c levels and increased serum FFA level and glucose tolerance. Nobiletin triggered the lipolysis of mesenteric and epididymal WAT at both ZT4 and ZT16. Nobiletin increased the level of RORγ at ZT16, that of BMAL1 and PPARγ at ZT4, and that of ATGL at both ZT4 and ZT16. Nobiletin increased lipolysis and ATGL levels in 3T3-L1 adipocytes in Bmal1- or Rora/c- dependent manner. Dual luciferase assay indicated that nobiletin enhanced the transcriptional activation of RORα/γ on Atgl promoter and decreased the repression of RORα/γ on PPARγ-binding PPRE. Promoter deletion analysis indicated that nobiletin inhibited the suppression of PPARγ-mediated Atgl transcription by RORα/γ. Taken together, nobiletin elevated lipolysis in WAT by increasing ATGL levels through activating the transcriptional activity of RORα/γ and decreasing the repression of RORα/γ on PPARγ-binding PPRE.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.