{"title":"小鼠与甲基汞共同暴露后,膳食蛋白质会影响汞的组织积累,并诱导肝脏 I 期和 II 期酶的表达。","authors":"","doi":"10.1016/j.jnutbio.2024.109712","DOIUrl":null,"url":null,"abstract":"<div><p>Methylmercury (MeHg) is a ubiquitous environmental contaminant, well known for its neurotoxic effects. MeHg can interact with several nutrients in the diet and affect nutrient metabolism, however the interaction between MeHg and dietary proteins has not been thoroughly investigated. Male BALB/c mice were fed diets based on either casein, cod or chicken as protein sources, which were or were not spiked with MeHg (3.5 mg Hg kg<sup>−1</sup>). Following 13 weeks of dietary exposure to MeHg, the animals accumulated mercury in a varying degree depending on the diet, where the levels of mercury were highest in the mice fed casein and MeHg, lower in mice fed cod and MeHg, and lowest in mice fed chicken and MeHg in all tissues assessed. Assessment of gut microbiota revealed differences in microbiota composition based on the different protein sources. However, the introduction of MeHg eliminated this difference. Proteomic profiling of liver tissue uncovered the influence of the dietary protein sources on a range of enzymes related to Phase I and Phase II detoxification mechanisms, suggesting an impact of the diet on MeHg metabolism and excretion. Also, enzymes linked to pathways including methionine and glycine betaine cycling, which in turn impact the production of glutathione, an important MeHg conjugation molecule, were up-regulated in mice fed chicken as dietary protein. Our findings indicate that dietary proteins can affect expression of hepatic enzymes that potentially influence MeHg metabolism and excretion, highlighting the relevance of considering the dietary composition in risk assessment of MeHg through dietary exposure.</p></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955286324001451/pdfft?md5=7cbbbb9116bb210273943973ae04c1e7&pid=1-s2.0-S0955286324001451-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dietary protein affects tissue accumulation of mercury and induces hepatic Phase I and Phase II enzyme expression after co-exposure with methylmercury in mice\",\"authors\":\"\",\"doi\":\"10.1016/j.jnutbio.2024.109712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Methylmercury (MeHg) is a ubiquitous environmental contaminant, well known for its neurotoxic effects. MeHg can interact with several nutrients in the diet and affect nutrient metabolism, however the interaction between MeHg and dietary proteins has not been thoroughly investigated. Male BALB/c mice were fed diets based on either casein, cod or chicken as protein sources, which were or were not spiked with MeHg (3.5 mg Hg kg<sup>−1</sup>). Following 13 weeks of dietary exposure to MeHg, the animals accumulated mercury in a varying degree depending on the diet, where the levels of mercury were highest in the mice fed casein and MeHg, lower in mice fed cod and MeHg, and lowest in mice fed chicken and MeHg in all tissues assessed. Assessment of gut microbiota revealed differences in microbiota composition based on the different protein sources. However, the introduction of MeHg eliminated this difference. Proteomic profiling of liver tissue uncovered the influence of the dietary protein sources on a range of enzymes related to Phase I and Phase II detoxification mechanisms, suggesting an impact of the diet on MeHg metabolism and excretion. Also, enzymes linked to pathways including methionine and glycine betaine cycling, which in turn impact the production of glutathione, an important MeHg conjugation molecule, were up-regulated in mice fed chicken as dietary protein. Our findings indicate that dietary proteins can affect expression of hepatic enzymes that potentially influence MeHg metabolism and excretion, highlighting the relevance of considering the dietary composition in risk assessment of MeHg through dietary exposure.</p></div>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0955286324001451/pdfft?md5=7cbbbb9116bb210273943973ae04c1e7&pid=1-s2.0-S0955286324001451-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955286324001451\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286324001451","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Dietary protein affects tissue accumulation of mercury and induces hepatic Phase I and Phase II enzyme expression after co-exposure with methylmercury in mice
Methylmercury (MeHg) is a ubiquitous environmental contaminant, well known for its neurotoxic effects. MeHg can interact with several nutrients in the diet and affect nutrient metabolism, however the interaction between MeHg and dietary proteins has not been thoroughly investigated. Male BALB/c mice were fed diets based on either casein, cod or chicken as protein sources, which were or were not spiked with MeHg (3.5 mg Hg kg−1). Following 13 weeks of dietary exposure to MeHg, the animals accumulated mercury in a varying degree depending on the diet, where the levels of mercury were highest in the mice fed casein and MeHg, lower in mice fed cod and MeHg, and lowest in mice fed chicken and MeHg in all tissues assessed. Assessment of gut microbiota revealed differences in microbiota composition based on the different protein sources. However, the introduction of MeHg eliminated this difference. Proteomic profiling of liver tissue uncovered the influence of the dietary protein sources on a range of enzymes related to Phase I and Phase II detoxification mechanisms, suggesting an impact of the diet on MeHg metabolism and excretion. Also, enzymes linked to pathways including methionine and glycine betaine cycling, which in turn impact the production of glutathione, an important MeHg conjugation molecule, were up-regulated in mice fed chicken as dietary protein. Our findings indicate that dietary proteins can affect expression of hepatic enzymes that potentially influence MeHg metabolism and excretion, highlighting the relevance of considering the dietary composition in risk assessment of MeHg through dietary exposure.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.