表面修饰的锌掺杂介孔二氧化硅纳米粒子具有更好的抗菌和快速止血性能。

IF 5.4 2区 医学 Q1 BIOPHYSICS
Raheleh Faridi Majidi , Abdorreza Sheikh-Mehdi Mesgar , Peiman Brouki Milan
{"title":"表面修饰的锌掺杂介孔二氧化硅纳米粒子具有更好的抗菌和快速止血性能。","authors":"Raheleh Faridi Majidi ,&nbsp;Abdorreza Sheikh-Mehdi Mesgar ,&nbsp;Peiman Brouki Milan","doi":"10.1016/j.colsurfb.2024.114132","DOIUrl":null,"url":null,"abstract":"<div><p>Severe bleeding and bacterial infections pose significant challenges to the global public health. Effective hemostatic materials have the potential to be used for rapid control of bleeding at the wound site. In this study, mesoporous silica nanoparticles (MSN) were doped with zinc ions (MSN@Zn) and subsequently functionalized with carboxyl (-COOH) groups through post-grafting, resulting in (MSN@Zn-COOH). The results demonstrated the successful functionalization of carboxyl groups on the surface of MSN@Zn mesoporous materials with minimal impact on the morphology. The released zinc ions showed potent antibacterial activity (above ∼80 %) against <em>Escherichia coli (E. coli)</em> and <em>Staphylococcus aureus (S. aureus). In vitro</em> and <em>in vivo</em> assessments of MSN@Zn-COOH revealed excellent hemostatic effects and favorable blood compatibility. Hemolysis percentages associated with MSN@Zn-COOH exhibited noteworthy reductions in comparison to MSN. Furthermore, a decrease in APTT (a test evaluating the intrinsic coagulation pathway) of modified MSN@Zn indicated enhanced hemostasis, supported by their negative zeta potential (∼ –14 to –43 mV). Importantly, all samples showed no cytotoxicity. This work underscores the potential of MSN@Zn-COOH, with its combined hemostatic performance and antibacterial activity, for emergency clinical applications.</p></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface-modified, zinc-incorporated mesoporous silica nanoparticles with improved antibacterial and rapid hemostatic properties\",\"authors\":\"Raheleh Faridi Majidi ,&nbsp;Abdorreza Sheikh-Mehdi Mesgar ,&nbsp;Peiman Brouki Milan\",\"doi\":\"10.1016/j.colsurfb.2024.114132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Severe bleeding and bacterial infections pose significant challenges to the global public health. Effective hemostatic materials have the potential to be used for rapid control of bleeding at the wound site. In this study, mesoporous silica nanoparticles (MSN) were doped with zinc ions (MSN@Zn) and subsequently functionalized with carboxyl (-COOH) groups through post-grafting, resulting in (MSN@Zn-COOH). The results demonstrated the successful functionalization of carboxyl groups on the surface of MSN@Zn mesoporous materials with minimal impact on the morphology. The released zinc ions showed potent antibacterial activity (above ∼80 %) against <em>Escherichia coli (E. coli)</em> and <em>Staphylococcus aureus (S. aureus). In vitro</em> and <em>in vivo</em> assessments of MSN@Zn-COOH revealed excellent hemostatic effects and favorable blood compatibility. Hemolysis percentages associated with MSN@Zn-COOH exhibited noteworthy reductions in comparison to MSN. Furthermore, a decrease in APTT (a test evaluating the intrinsic coagulation pathway) of modified MSN@Zn indicated enhanced hemostasis, supported by their negative zeta potential (∼ –14 to –43 mV). Importantly, all samples showed no cytotoxicity. This work underscores the potential of MSN@Zn-COOH, with its combined hemostatic performance and antibacterial activity, for emergency clinical applications.</p></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776524003916\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776524003916","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

严重出血和细菌感染对全球公共卫生构成重大挑战。有效的止血材料有望用于快速控制伤口处的出血。在这项研究中,介孔二氧化硅纳米颗粒(MSN)掺杂了锌离子(MSN@Zn),随后通过后接枝作用使其具有羧基(-COOH)功能,从而得到(MSN@Zn-COOH)。结果表明,羧基在 MSN@Zn 介孔材料表面的功能化非常成功,对其形态的影响极小。释放出的锌离子对大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)具有很强的抗菌活性(超过 ∼ 80 %)。对 MSN@Zn-COOH 的体外和体内评估表明,其具有出色的止血效果和良好的血液相容性。与 MSN 相比,MSN@Zn-COOH 的溶血率显著降低。此外,改性 MSN@Zn 的 APTT(一种评估内在凝血途径的测试)降低,表明其止血效果增强,其负 Zeta 电位(∼ -14 至 -43 mV)也为其提供了支持。重要的是,所有样品均无细胞毒性。这项研究强调了 MSN@Zn-COOH 兼具止血性能和抗菌活性,具有临床紧急应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface-modified, zinc-incorporated mesoporous silica nanoparticles with improved antibacterial and rapid hemostatic properties

Surface-modified, zinc-incorporated mesoporous silica nanoparticles with improved antibacterial and rapid hemostatic properties

Severe bleeding and bacterial infections pose significant challenges to the global public health. Effective hemostatic materials have the potential to be used for rapid control of bleeding at the wound site. In this study, mesoporous silica nanoparticles (MSN) were doped with zinc ions (MSN@Zn) and subsequently functionalized with carboxyl (-COOH) groups through post-grafting, resulting in (MSN@Zn-COOH). The results demonstrated the successful functionalization of carboxyl groups on the surface of MSN@Zn mesoporous materials with minimal impact on the morphology. The released zinc ions showed potent antibacterial activity (above ∼80 %) against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In vitro and in vivo assessments of MSN@Zn-COOH revealed excellent hemostatic effects and favorable blood compatibility. Hemolysis percentages associated with MSN@Zn-COOH exhibited noteworthy reductions in comparison to MSN. Furthermore, a decrease in APTT (a test evaluating the intrinsic coagulation pathway) of modified MSN@Zn indicated enhanced hemostasis, supported by their negative zeta potential (∼ –14 to –43 mV). Importantly, all samples showed no cytotoxicity. This work underscores the potential of MSN@Zn-COOH, with its combined hemostatic performance and antibacterial activity, for emergency clinical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信