Hui Li, Fei Chen, Haoyuan Jia, Ziyu Ye, Hang Zhou, Song Luo, Junheng Shi, Zhenrong Sun, Huailiang Xu, Hongxing Xu, Tim Byrnes, Zhanghai Chen, Jian Wu
{"title":"局部激子极化子中的全光时序逻辑门","authors":"Hui Li, Fei Chen, Haoyuan Jia, Ziyu Ye, Hang Zhou, Song Luo, Junheng Shi, Zhenrong Sun, Huailiang Xu, Hongxing Xu, Tim Byrnes, Zhanghai Chen, Jian Wu","doi":"10.1038/s41566-024-01483-2","DOIUrl":null,"url":null,"abstract":"Exciton polaritons—quasi-particle excitations consisting of strongly coupled photons and excitons—present fascinating possibilities for photonic circuits, owing to their strong nonlinearity, ultrafast reaction times and their ability to form macroscopic quantum states at room temperature via non-equilibrium condensation. Past implementations of transistors and logic gates with exciton polaritons have been mostly realized using the spatial propagation of polariton fluids, which place high demands on the fabrication of the microcavities and typically require complex manipulations. In this work we have implemented the full set of logical gate functionalities (that is, temporal AND, OR and NOT gates) in localized exciton polaritons at room temperature, on the basis of precisely controlling the interplay between polariton condensate and exciton reservoir dynamics, using a two-pulse excitation scheme. The dynamics intrinsically covers the cascadability required by the logical operations, enabling efficient information processing without the need for spatial flow. The temporal polariton logic gates demonstrate advantages in ultrafast switching, universality and simplified compatibility with other dimensional controls, showing great potential for building polariton logic networks in strongly coupled light–matter systems. Researchers have achieved AND, OR and NOT gates, using localized exciton polaritons at room temperature. The logic is based on temporal gates, rather than relying on the usual spatial propagation approaches.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 8","pages":"864-869"},"PeriodicalIF":32.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01483-2.pdf","citationCount":"0","resultStr":"{\"title\":\"All-optical temporal logic gates in localized exciton polaritons\",\"authors\":\"Hui Li, Fei Chen, Haoyuan Jia, Ziyu Ye, Hang Zhou, Song Luo, Junheng Shi, Zhenrong Sun, Huailiang Xu, Hongxing Xu, Tim Byrnes, Zhanghai Chen, Jian Wu\",\"doi\":\"10.1038/s41566-024-01483-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exciton polaritons—quasi-particle excitations consisting of strongly coupled photons and excitons—present fascinating possibilities for photonic circuits, owing to their strong nonlinearity, ultrafast reaction times and their ability to form macroscopic quantum states at room temperature via non-equilibrium condensation. Past implementations of transistors and logic gates with exciton polaritons have been mostly realized using the spatial propagation of polariton fluids, which place high demands on the fabrication of the microcavities and typically require complex manipulations. In this work we have implemented the full set of logical gate functionalities (that is, temporal AND, OR and NOT gates) in localized exciton polaritons at room temperature, on the basis of precisely controlling the interplay between polariton condensate and exciton reservoir dynamics, using a two-pulse excitation scheme. The dynamics intrinsically covers the cascadability required by the logical operations, enabling efficient information processing without the need for spatial flow. The temporal polariton logic gates demonstrate advantages in ultrafast switching, universality and simplified compatibility with other dimensional controls, showing great potential for building polariton logic networks in strongly coupled light–matter systems. Researchers have achieved AND, OR and NOT gates, using localized exciton polaritons at room temperature. The logic is based on temporal gates, rather than relying on the usual spatial propagation approaches.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"18 8\",\"pages\":\"864-869\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41566-024-01483-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-024-01483-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01483-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
激子极化子--由强耦合光子和激子组成的准粒子激发--由于其强烈的非线性、超快的反应时间以及在室温下通过非平衡凝聚形成宏观量子态的能力,为光子电路带来了迷人的可能性。以往利用激子极化子实现晶体管和逻辑门的方法大多是利用极化子流体的空间传播,这对微腔的制造提出了很高的要求,通常需要复杂的操作。在这项工作中,我们利用双脉冲激发方案,在精确控制极化子凝聚态和激子储库动态之间相互作用的基础上,在室温下实现了局部激子极化子的全套逻辑门功能(即时序 AND、OR 和 NOT 门)。该动力学本质上涵盖了逻辑运算所需的级联性,无需空间流即可实现高效的信息处理。时态极化子逻辑门在超快开关、通用性和与其他维度控制的简化兼容性方面表现出优势,显示出在强耦合光物质系统中构建极化子逻辑网络的巨大潜力。
All-optical temporal logic gates in localized exciton polaritons
Exciton polaritons—quasi-particle excitations consisting of strongly coupled photons and excitons—present fascinating possibilities for photonic circuits, owing to their strong nonlinearity, ultrafast reaction times and their ability to form macroscopic quantum states at room temperature via non-equilibrium condensation. Past implementations of transistors and logic gates with exciton polaritons have been mostly realized using the spatial propagation of polariton fluids, which place high demands on the fabrication of the microcavities and typically require complex manipulations. In this work we have implemented the full set of logical gate functionalities (that is, temporal AND, OR and NOT gates) in localized exciton polaritons at room temperature, on the basis of precisely controlling the interplay between polariton condensate and exciton reservoir dynamics, using a two-pulse excitation scheme. The dynamics intrinsically covers the cascadability required by the logical operations, enabling efficient information processing without the need for spatial flow. The temporal polariton logic gates demonstrate advantages in ultrafast switching, universality and simplified compatibility with other dimensional controls, showing great potential for building polariton logic networks in strongly coupled light–matter systems. Researchers have achieved AND, OR and NOT gates, using localized exciton polaritons at room temperature. The logic is based on temporal gates, rather than relying on the usual spatial propagation approaches.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.