通过超高清双层转印实现高效印刷量子点发光二极管

IF 32.3 1区 物理与天体物理 Q1 OPTICS
Jisu Yoo, Kyunghoon Lee, U. Jeong Yang, Hyeon Hwa Song, Jae Hong Jang, Gwang Heon Lee, Megalamane S. Bootharaju, Jun Hee Kim, Kiwook Kim, Soo Ik Park, Jung Duk Seo, Shi Li, Won Seok Yu, Jong Ik Kwon, Myoung Hoon Song, Taeghwan Hyeon, Jiwoong Yang, Moon Kee Choi
{"title":"通过超高清双层转印实现高效印刷量子点发光二极管","authors":"Jisu Yoo, Kyunghoon Lee, U. Jeong Yang, Hyeon Hwa Song, Jae Hong Jang, Gwang Heon Lee, Megalamane S. Bootharaju, Jun Hee Kim, Kiwook Kim, Soo Ik Park, Jung Duk Seo, Shi Li, Won Seok Yu, Jong Ik Kwon, Myoung Hoon Song, Taeghwan Hyeon, Jiwoong Yang, Moon Kee Choi","doi":"10.1038/s41566-024-01496-x","DOIUrl":null,"url":null,"abstract":"Highly efficient and high-definition displays with deformable form factors are highly desirable for next-generation electronic devices. Despite the unique advantages of quantum dots (QDs), including high photoluminescence quantum yield, wide colour range and high colour purity, developing a QD patterning process for high-definition pixels and efficient QD light-emitting diodes (QLEDs) is in its early stages. Here we present highly efficient QLEDs through ultrahigh-definition double-layer transfer printing of a QD/ZnO film. Surface engineering of viscoelastic stamps enables double-layer transfer printing that can create RGB pixelated patterns with 2,565 pixels per inch and monochromic QD patterns with ~20,526 pixels per inch. The close packing of both QDs and ZnO nanoparticles by double-layer transfer printing substantially minimizes the leakage current, enhancing the external quantum efficiency of our devices to 23.3%. Furthermore, we demonstrate highly efficient wearable QLEDs fabricated by our technique. This study paves the way for the development of highly efficient, full-colour QD displays via the transfer printing technique, demonstrating great promise for next-generation display technologies. Transfer printing of a quantum dot–ZnO film with a surface-functionalized viscoelastic stamp enables the realization of RGB QLED pixels with a resolution of 2,500 pixels per inch and a peak external quantum efficiency of 23.3% for green-emitting devices.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 10","pages":"1105-1112"},"PeriodicalIF":32.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing\",\"authors\":\"Jisu Yoo, Kyunghoon Lee, U. Jeong Yang, Hyeon Hwa Song, Jae Hong Jang, Gwang Heon Lee, Megalamane S. Bootharaju, Jun Hee Kim, Kiwook Kim, Soo Ik Park, Jung Duk Seo, Shi Li, Won Seok Yu, Jong Ik Kwon, Myoung Hoon Song, Taeghwan Hyeon, Jiwoong Yang, Moon Kee Choi\",\"doi\":\"10.1038/s41566-024-01496-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly efficient and high-definition displays with deformable form factors are highly desirable for next-generation electronic devices. Despite the unique advantages of quantum dots (QDs), including high photoluminescence quantum yield, wide colour range and high colour purity, developing a QD patterning process for high-definition pixels and efficient QD light-emitting diodes (QLEDs) is in its early stages. Here we present highly efficient QLEDs through ultrahigh-definition double-layer transfer printing of a QD/ZnO film. Surface engineering of viscoelastic stamps enables double-layer transfer printing that can create RGB pixelated patterns with 2,565 pixels per inch and monochromic QD patterns with ~20,526 pixels per inch. The close packing of both QDs and ZnO nanoparticles by double-layer transfer printing substantially minimizes the leakage current, enhancing the external quantum efficiency of our devices to 23.3%. Furthermore, we demonstrate highly efficient wearable QLEDs fabricated by our technique. This study paves the way for the development of highly efficient, full-colour QD displays via the transfer printing technique, demonstrating great promise for next-generation display technologies. Transfer printing of a quantum dot–ZnO film with a surface-functionalized viscoelastic stamp enables the realization of RGB QLED pixels with a resolution of 2,500 pixels per inch and a peak external quantum efficiency of 23.3% for green-emitting devices.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"18 10\",\"pages\":\"1105-1112\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-024-01496-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01496-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

对于下一代电子设备来说,具有可变形外形尺寸的高效高清显示器是非常理想的。尽管量子点(QDs)具有独特的优势,包括高光致发光量子产率、宽色彩范围和高色彩纯度,但开发用于高清像素和高效 QD 发光二极管(QLEDs)的 QD 图案工艺仍处于早期阶段。在此,我们通过对 QD/ZnO 薄膜进行超高清双层转印,展示了高效 QLED。粘弹性印章的表面工程实现了双层转移印花,可以创建每英寸 2,565 像素的 RGB 像素图案和每英寸 ~20,526 像素的单色 QD 图案。通过双层转印,QDs 和 ZnO 纳米粒子紧密堆积,大大降低了泄漏电流,从而将我们器件的外部量子效率提高到 23.3%。此外,我们还展示了利用我们的技术制造的高效可穿戴 QLED。这项研究为通过转移印花技术开发高效全彩色 QD 显示器铺平了道路,为下一代显示技术带来了巨大前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing

Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing

Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing
Highly efficient and high-definition displays with deformable form factors are highly desirable for next-generation electronic devices. Despite the unique advantages of quantum dots (QDs), including high photoluminescence quantum yield, wide colour range and high colour purity, developing a QD patterning process for high-definition pixels and efficient QD light-emitting diodes (QLEDs) is in its early stages. Here we present highly efficient QLEDs through ultrahigh-definition double-layer transfer printing of a QD/ZnO film. Surface engineering of viscoelastic stamps enables double-layer transfer printing that can create RGB pixelated patterns with 2,565 pixels per inch and monochromic QD patterns with ~20,526 pixels per inch. The close packing of both QDs and ZnO nanoparticles by double-layer transfer printing substantially minimizes the leakage current, enhancing the external quantum efficiency of our devices to 23.3%. Furthermore, we demonstrate highly efficient wearable QLEDs fabricated by our technique. This study paves the way for the development of highly efficient, full-colour QD displays via the transfer printing technique, demonstrating great promise for next-generation display technologies. Transfer printing of a quantum dot–ZnO film with a surface-functionalized viscoelastic stamp enables the realization of RGB QLED pixels with a resolution of 2,500 pixels per inch and a peak external quantum efficiency of 23.3% for green-emitting devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信