超越临界掺杂的铜氧化物中镜像对称性的自发破缺

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Saegyeol Jung, Byeongjun Seok, Chang jae Roh, Younsik Kim, Donghan Kim, Yeonjae Lee, San Kang, Shigeyuki Ishida, Shik Shin, Hiroshi Eisaki, Tae Won Noh, Dongjoon Song, Changyoung Kim
{"title":"超越临界掺杂的铜氧化物中镜像对称性的自发破缺","authors":"Saegyeol Jung, Byeongjun Seok, Chang jae Roh, Younsik Kim, Donghan Kim, Yeonjae Lee, San Kang, Shigeyuki Ishida, Shik Shin, Hiroshi Eisaki, Tae Won Noh, Dongjoon Song, Changyoung Kim","doi":"10.1038/s41567-024-02601-1","DOIUrl":null,"url":null,"abstract":"Identifying ordered phases and their underlying symmetries in materials that exhibit high-temperature superconductivity is an important step towards understanding the mechanism of that phenomenon. Indeed, the critical behaviour related to phase transitions of those ordered phases is expected to be correlated with the superconductivity. In cuprate materials, efforts to find such ordered phases have mainly focused on symmetry breaking in the pseudogap region whereas the Fermi-liquid-like metallic region beyond the so-called critical doping at which the pseudogap disappears has been regarded as a trivial disordered state. Here, we uncover a broken mirror symmetry in the Fermi-liquid-like phase in (Bi,Pb)2Sr2CaCu2O8+δ beyond the critical doping. We do this by tracking the temperature dependence of the rotational-anisotropy of second-harmonic generation for two different dopings. We observe behaviour reminiscent of an order parameter with an onset temperature that coincides with the strange metal to Fermi-liquid-like metal crossover. Angle-resolved photoemission spectroscopy shows that the quasiparticle coherence between CuO2 bilayers is enhanced in proportion to the symmetry-breaking response as a function of temperature, suggesting that the change in metallicity and symmetry breaking are linked. These observations contradict the conventional quantum disordered scenario for over-critical-doped cuprates. The Fermi liquid state in highly doped superconducting cuprates is normally thought of as disordered. Now, an observation of broken mirror symmetry in that phase suggests otherwise.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 10","pages":"1616-1621"},"PeriodicalIF":17.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spontaneous breaking of mirror symmetry in a cuprate beyond critical doping\",\"authors\":\"Saegyeol Jung, Byeongjun Seok, Chang jae Roh, Younsik Kim, Donghan Kim, Yeonjae Lee, San Kang, Shigeyuki Ishida, Shik Shin, Hiroshi Eisaki, Tae Won Noh, Dongjoon Song, Changyoung Kim\",\"doi\":\"10.1038/s41567-024-02601-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying ordered phases and their underlying symmetries in materials that exhibit high-temperature superconductivity is an important step towards understanding the mechanism of that phenomenon. Indeed, the critical behaviour related to phase transitions of those ordered phases is expected to be correlated with the superconductivity. In cuprate materials, efforts to find such ordered phases have mainly focused on symmetry breaking in the pseudogap region whereas the Fermi-liquid-like metallic region beyond the so-called critical doping at which the pseudogap disappears has been regarded as a trivial disordered state. Here, we uncover a broken mirror symmetry in the Fermi-liquid-like phase in (Bi,Pb)2Sr2CaCu2O8+δ beyond the critical doping. We do this by tracking the temperature dependence of the rotational-anisotropy of second-harmonic generation for two different dopings. We observe behaviour reminiscent of an order parameter with an onset temperature that coincides with the strange metal to Fermi-liquid-like metal crossover. Angle-resolved photoemission spectroscopy shows that the quasiparticle coherence between CuO2 bilayers is enhanced in proportion to the symmetry-breaking response as a function of temperature, suggesting that the change in metallicity and symmetry breaking are linked. These observations contradict the conventional quantum disordered scenario for over-critical-doped cuprates. The Fermi liquid state in highly doped superconducting cuprates is normally thought of as disordered. Now, an observation of broken mirror symmetry in that phase suggests otherwise.\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"20 10\",\"pages\":\"1616-1621\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41567-024-02601-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02601-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在表现出高温超导性的材料中识别有序相及其基本对称性,是了解该现象机理的重要一步。事实上,与这些有序相的相变有关的临界行为预计与超导性相关。在杯状材料中,寻找此类有序相的努力主要集中在伪间隙区域的对称性破缺上,而在伪间隙消失的所谓临界掺杂之外的费米液体状金属区域则被视为微不足道的无序状态。在这里,我们揭示了(Bi,Pb)2Sr2CaCu2O8+δ中临界掺杂之外的费米液相的破碎镜像对称性。为此,我们跟踪了两种不同掺杂情况下二次谐波产生的旋转各向异性的温度依赖性。我们观察到的行为让人联想到一个阶次参数,其起始温度与奇异金属到类费米液体金属的交叉相吻合。角度分辨光发射光谱显示,随着温度的变化,CuO2 双层膜之间的准粒子相干性与对称性破缺响应成比例地增强,这表明金属性的变化与对称性破缺是相关联的。这些观察结果与超临界掺杂铜氧化物的传统量子无序情况相矛盾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spontaneous breaking of mirror symmetry in a cuprate beyond critical doping

Spontaneous breaking of mirror symmetry in a cuprate beyond critical doping

Spontaneous breaking of mirror symmetry in a cuprate beyond critical doping
Identifying ordered phases and their underlying symmetries in materials that exhibit high-temperature superconductivity is an important step towards understanding the mechanism of that phenomenon. Indeed, the critical behaviour related to phase transitions of those ordered phases is expected to be correlated with the superconductivity. In cuprate materials, efforts to find such ordered phases have mainly focused on symmetry breaking in the pseudogap region whereas the Fermi-liquid-like metallic region beyond the so-called critical doping at which the pseudogap disappears has been regarded as a trivial disordered state. Here, we uncover a broken mirror symmetry in the Fermi-liquid-like phase in (Bi,Pb)2Sr2CaCu2O8+δ beyond the critical doping. We do this by tracking the temperature dependence of the rotational-anisotropy of second-harmonic generation for two different dopings. We observe behaviour reminiscent of an order parameter with an onset temperature that coincides with the strange metal to Fermi-liquid-like metal crossover. Angle-resolved photoemission spectroscopy shows that the quasiparticle coherence between CuO2 bilayers is enhanced in proportion to the symmetry-breaking response as a function of temperature, suggesting that the change in metallicity and symmetry breaking are linked. These observations contradict the conventional quantum disordered scenario for over-critical-doped cuprates. The Fermi liquid state in highly doped superconducting cuprates is normally thought of as disordered. Now, an observation of broken mirror symmetry in that phase suggests otherwise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信