Wagner de F. Alves, Leonardo C. de Souza, Oliver Schweiger, Victor R. di Cavalcanti, Josef Settele, Martin Wiemers, Reto Schmucki, Mikko Kuussaari, Olga Tzortzakaki, Lars B. Pettersson, Benoît Fontaine, Chris van Swaay, Constantí Stefanescu, Dirk Maes, Michiel F. WallisDeVries, Andros T. Gianuca
{"title":"连通性和气候影响欧洲蝴蝶元群落跨空间尺度的多样性-稳定性关系","authors":"Wagner de F. Alves, Leonardo C. de Souza, Oliver Schweiger, Victor R. di Cavalcanti, Josef Settele, Martin Wiemers, Reto Schmucki, Mikko Kuussaari, Olga Tzortzakaki, Lars B. Pettersson, Benoît Fontaine, Chris van Swaay, Constantí Stefanescu, Dirk Maes, Michiel F. WallisDeVries, Andros T. Gianuca","doi":"10.1111/geb.13896","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Anthropogenic-driven biodiversity loss can impact ecosystem stability. However, most studies have only evaluated the diversity–stability relationship at the local scale and we do not fully understand which factors stabilize animal populations and communities across scales. Here, we investigate the role of species dispersal ability, climate, spatial distance and different facets of biodiversity on the stability of butterfly populations and communities across multiple spatial scales.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Primarily Western Europe.</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>2005–2016.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Butterflies (Rhopalocera) of Europe.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We assembled a continent-wide database of European butterflies' abundance and used Structural Equation Modelling to evaluate the direct and indirect effects of multiple stabilizing mechanisms. In parallel, we tested the effect of dispersal ability on the stability at multiple spatial scales, using a butterfly mobility index as an indicator of dispersal capacity.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Regional stability strongly reflected local stability, which in turn was driven by both taxonomic and functional α-diversity. Spatial asynchrony was also important for regional stability and it was driven by both functional β-diversity and metapopulation asynchrony, which in turn increased with spatial distance among communities. We observed a positive effect of temperature on functional α-diversity and on local stability, whereas precipitation negatively influenced local diversity. Finally, spatial asynchrony contributed more to the regional stability of less mobile species compared to highly mobile ones, indicating that both extrinsic and intrinsic determinants of connectivity impact regional stability indirectly.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Our results demonstrate the importance of local and regional processes for regional stability. However, the relative contribution of spatial asynchrony and metapopulation asynchrony increases with connectivity loss, especially for less mobile species, indicating that landscape management should be tailored depending on the dispersal capacity of organisms. Both local biodiversity loss and regional biotic homogenization destabilize metacommunities, with potential implications for the reliable provision of ecosystem functions.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 10","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connectivity and climate influence diversity–stability relationships across spatial scales in European butterfly metacommunities\",\"authors\":\"Wagner de F. Alves, Leonardo C. de Souza, Oliver Schweiger, Victor R. di Cavalcanti, Josef Settele, Martin Wiemers, Reto Schmucki, Mikko Kuussaari, Olga Tzortzakaki, Lars B. Pettersson, Benoît Fontaine, Chris van Swaay, Constantí Stefanescu, Dirk Maes, Michiel F. WallisDeVries, Andros T. Gianuca\",\"doi\":\"10.1111/geb.13896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Anthropogenic-driven biodiversity loss can impact ecosystem stability. However, most studies have only evaluated the diversity–stability relationship at the local scale and we do not fully understand which factors stabilize animal populations and communities across scales. Here, we investigate the role of species dispersal ability, climate, spatial distance and different facets of biodiversity on the stability of butterfly populations and communities across multiple spatial scales.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Primarily Western Europe.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period</h3>\\n \\n <p>2005–2016.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major Taxa Studied</h3>\\n \\n <p>Butterflies (Rhopalocera) of Europe.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We assembled a continent-wide database of European butterflies' abundance and used Structural Equation Modelling to evaluate the direct and indirect effects of multiple stabilizing mechanisms. In parallel, we tested the effect of dispersal ability on the stability at multiple spatial scales, using a butterfly mobility index as an indicator of dispersal capacity.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Regional stability strongly reflected local stability, which in turn was driven by both taxonomic and functional α-diversity. Spatial asynchrony was also important for regional stability and it was driven by both functional β-diversity and metapopulation asynchrony, which in turn increased with spatial distance among communities. We observed a positive effect of temperature on functional α-diversity and on local stability, whereas precipitation negatively influenced local diversity. Finally, spatial asynchrony contributed more to the regional stability of less mobile species compared to highly mobile ones, indicating that both extrinsic and intrinsic determinants of connectivity impact regional stability indirectly.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>Our results demonstrate the importance of local and regional processes for regional stability. However, the relative contribution of spatial asynchrony and metapopulation asynchrony increases with connectivity loss, especially for less mobile species, indicating that landscape management should be tailored depending on the dispersal capacity of organisms. Both local biodiversity loss and regional biotic homogenization destabilize metacommunities, with potential implications for the reliable provision of ecosystem functions.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"33 10\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13896\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13896","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Connectivity and climate influence diversity–stability relationships across spatial scales in European butterfly metacommunities
Aim
Anthropogenic-driven biodiversity loss can impact ecosystem stability. However, most studies have only evaluated the diversity–stability relationship at the local scale and we do not fully understand which factors stabilize animal populations and communities across scales. Here, we investigate the role of species dispersal ability, climate, spatial distance and different facets of biodiversity on the stability of butterfly populations and communities across multiple spatial scales.
Location
Primarily Western Europe.
Time Period
2005–2016.
Major Taxa Studied
Butterflies (Rhopalocera) of Europe.
Methods
We assembled a continent-wide database of European butterflies' abundance and used Structural Equation Modelling to evaluate the direct and indirect effects of multiple stabilizing mechanisms. In parallel, we tested the effect of dispersal ability on the stability at multiple spatial scales, using a butterfly mobility index as an indicator of dispersal capacity.
Results
Regional stability strongly reflected local stability, which in turn was driven by both taxonomic and functional α-diversity. Spatial asynchrony was also important for regional stability and it was driven by both functional β-diversity and metapopulation asynchrony, which in turn increased with spatial distance among communities. We observed a positive effect of temperature on functional α-diversity and on local stability, whereas precipitation negatively influenced local diversity. Finally, spatial asynchrony contributed more to the regional stability of less mobile species compared to highly mobile ones, indicating that both extrinsic and intrinsic determinants of connectivity impact regional stability indirectly.
Main Conclusions
Our results demonstrate the importance of local and regional processes for regional stability. However, the relative contribution of spatial asynchrony and metapopulation asynchrony increases with connectivity loss, especially for less mobile species, indicating that landscape management should be tailored depending on the dispersal capacity of organisms. Both local biodiversity loss and regional biotic homogenization destabilize metacommunities, with potential implications for the reliable provision of ecosystem functions.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.