如何根据 SEIR 模型的数据正确拟合 SIR 模型?

IF 1.9 4区 数学 Q2 BIOLOGY
Wasiur R. KhudaBukhsh , Grzegorz A. Rempała
{"title":"如何根据 SEIR 模型的数据正确拟合 SIR 模型?","authors":"Wasiur R. KhudaBukhsh ,&nbsp;Grzegorz A. Rempała","doi":"10.1016/j.mbs.2024.109265","DOIUrl":null,"url":null,"abstract":"<div><p>In epidemiology, realistic disease dynamics often require Susceptible-Exposed-Infected-Recovered (SEIR)-like models because they account for incubation periods before individuals become infectious. However, for the sake of analytical tractability, simpler Susceptible-Infected-Recovered (SIR) models are commonly used, despite their lack of biological realism. Bridging these models is crucial for accurately estimating parameters and fitting models to observed data, particularly in population-level studies of infectious diseases.</p><p>This paper investigates stochastic versions of the SEIR and SIR frameworks and demonstrates that the SEIR model can be effectively approximated by a SIR model with time-dependent infection and recovery rates. The validity of this approximation is supported by the derivation of a large-population Functional Law of Large Numbers (FLLN) limit and a finite-population concentration inequality.</p><p>To apply this approximation in practice, the paper introduces a parameter inference methodology based on the Dynamic Survival Analysis (DSA) survival analysis framework. This method enables the fitting of the SIR model to data simulated from the more complex SEIR dynamics, as illustrated through simulated experiments.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"375 ","pages":"Article 109265"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424001251/pdfft?md5=af4ef0b293b05ec276ca8eb18fbf004f&pid=1-s2.0-S0025556424001251-main.pdf","citationCount":"0","resultStr":"{\"title\":\"How to correctly fit an SIR model to data from an SEIR model?\",\"authors\":\"Wasiur R. KhudaBukhsh ,&nbsp;Grzegorz A. Rempała\",\"doi\":\"10.1016/j.mbs.2024.109265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In epidemiology, realistic disease dynamics often require Susceptible-Exposed-Infected-Recovered (SEIR)-like models because they account for incubation periods before individuals become infectious. However, for the sake of analytical tractability, simpler Susceptible-Infected-Recovered (SIR) models are commonly used, despite their lack of biological realism. Bridging these models is crucial for accurately estimating parameters and fitting models to observed data, particularly in population-level studies of infectious diseases.</p><p>This paper investigates stochastic versions of the SEIR and SIR frameworks and demonstrates that the SEIR model can be effectively approximated by a SIR model with time-dependent infection and recovery rates. The validity of this approximation is supported by the derivation of a large-population Functional Law of Large Numbers (FLLN) limit and a finite-population concentration inequality.</p><p>To apply this approximation in practice, the paper introduces a parameter inference methodology based on the Dynamic Survival Analysis (DSA) survival analysis framework. This method enables the fitting of the SIR model to data simulated from the more complex SEIR dynamics, as illustrated through simulated experiments.</p></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"375 \",\"pages\":\"Article 109265\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001251/pdfft?md5=af4ef0b293b05ec276ca8eb18fbf004f&pid=1-s2.0-S0025556424001251-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001251\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001251","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在流行病学中,现实的疾病动力学通常需要类似于 "易感-暴露-感染-恢复"(SEIR)的模型,因为这些模型考虑了个体感染前的潜伏期。然而,为了分析的可操作性,人们通常使用更简单的易感-感染-恢复(SIR)模型,尽管这些模型缺乏生物真实性。衔接这些模型对于准确估计参数和将模型与观测数据拟合至关重要,尤其是在传染病的群体水平研究中。本文研究了 SEIR 和 SIR 框架的随机版本,并证明 SEIR 模型可以有效地近似于具有随时间变化的感染率和恢复率的 SIR 模型。大群体大数函数定律(FLLN)极限和有限群体浓度不等式的推导支持了这种近似的有效性。为了在实践中应用这一近似值,本文介绍了一种基于动态生存分析(DSA)生存分析框架的参数推断方法。通过模拟实验说明,该方法可将 SIR 模型与更复杂的 SEIR 动态模拟数据进行拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

How to correctly fit an SIR model to data from an SEIR model?

How to correctly fit an SIR model to data from an SEIR model?

In epidemiology, realistic disease dynamics often require Susceptible-Exposed-Infected-Recovered (SEIR)-like models because they account for incubation periods before individuals become infectious. However, for the sake of analytical tractability, simpler Susceptible-Infected-Recovered (SIR) models are commonly used, despite their lack of biological realism. Bridging these models is crucial for accurately estimating parameters and fitting models to observed data, particularly in population-level studies of infectious diseases.

This paper investigates stochastic versions of the SEIR and SIR frameworks and demonstrates that the SEIR model can be effectively approximated by a SIR model with time-dependent infection and recovery rates. The validity of this approximation is supported by the derivation of a large-population Functional Law of Large Numbers (FLLN) limit and a finite-population concentration inequality.

To apply this approximation in practice, the paper introduces a parameter inference methodology based on the Dynamic Survival Analysis (DSA) survival analysis framework. This method enables the fitting of the SIR model to data simulated from the more complex SEIR dynamics, as illustrated through simulated experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信