抗肿瘤褪黑激素纳米脂质载体。

Lorena Bonilla-Vidal, Marta Świtalska, Marta Espina, Joanna Wietrzyk, Maria Luisa García, Eliana B Souto, Anna Gliszczyńska, Elena Sánchez-López
{"title":"抗肿瘤褪黑激素纳米脂质载体。","authors":"Lorena Bonilla-Vidal, Marta Świtalska, Marta Espina, Joanna Wietrzyk, Maria Luisa García, Eliana B Souto, Anna Gliszczyńska, Elena Sánchez-López","doi":"10.1080/17435889.2024.2379757","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> Cancer constitutes the second leading cause of death worldwide, with conventional therapies limited by significant side effects. Melatonin (MEL), a natural compound with antitumoral properties, suffers from instability and low solubility. To overcome these issues, MEL was encapsulated into nanostructured lipid carriers (MEL-NLC) containing rosehip oil to enhance stability and boost its antitumoral activity. <b>Methods:</b> MEL-NLC were optimized by a design of experiments approach and characterized for their physicochemical properties. Stability and biopharmaceutical behavior were assessed, along with interaction studies and <i>in vitro</i> antitumoral efficacy against various cancer cell lines. <b>Results:</b> Optimized MEL-NLC exhibited desirable physicochemical characteristics, including small particle size and sustained MEL release, along with long-term stability. <i>In vitro</i> studies demonstrated that MEL-NLC selectively induced cytotoxicity in several cancer cell lines while sparing healthy cells. <b>Conclusion:</b> MEL-NLC represent a promising alternative for cancer, combining enhanced stability and targeted antitumoral activity, potentially overcoming the limitations of conventional treatments.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antitumoral melatonin-loaded nanostructured lipid carriers.\",\"authors\":\"Lorena Bonilla-Vidal, Marta Świtalska, Marta Espina, Joanna Wietrzyk, Maria Luisa García, Eliana B Souto, Anna Gliszczyńska, Elena Sánchez-López\",\"doi\":\"10.1080/17435889.2024.2379757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> Cancer constitutes the second leading cause of death worldwide, with conventional therapies limited by significant side effects. Melatonin (MEL), a natural compound with antitumoral properties, suffers from instability and low solubility. To overcome these issues, MEL was encapsulated into nanostructured lipid carriers (MEL-NLC) containing rosehip oil to enhance stability and boost its antitumoral activity. <b>Methods:</b> MEL-NLC were optimized by a design of experiments approach and characterized for their physicochemical properties. Stability and biopharmaceutical behavior were assessed, along with interaction studies and <i>in vitro</i> antitumoral efficacy against various cancer cell lines. <b>Results:</b> Optimized MEL-NLC exhibited desirable physicochemical characteristics, including small particle size and sustained MEL release, along with long-term stability. <i>In vitro</i> studies demonstrated that MEL-NLC selectively induced cytotoxicity in several cancer cell lines while sparing healthy cells. <b>Conclusion:</b> MEL-NLC represent a promising alternative for cancer, combining enhanced stability and targeted antitumoral activity, potentially overcoming the limitations of conventional treatments.</p>\",\"PeriodicalId\":74240,\"journal\":{\"name\":\"Nanomedicine (London, England)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine (London, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17435889.2024.2379757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17435889.2024.2379757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:癌症是全球第二大死因,传统疗法因副作用大而受到限制。褪黑素(MEL)是一种具有抗肿瘤特性的天然化合物,但存在不稳定和溶解度低的问题。为了克服这些问题,我们将褪黑素封装到含有玫瑰果油的纳米结构脂质载体(MEL-NLC)中,以提高其稳定性并增强其抗肿瘤活性。研究方法通过实验设计方法对 MEL-NLC 进行了优化,并对其理化性质进行了表征。对其稳定性和生物制药行为进行了评估,同时还进行了相互作用研究和体外抗肿瘤效果研究。结果:优化后的 MEL-NLC 具有理想的理化特性,包括小粒径、持续释放 MEL 以及长期稳定性。体外研究表明,MEL-NLC 可选择性地诱导多种癌细胞株产生细胞毒性,同时保护健康细胞。结论:MEL-NLCMEL-NLC 是一种很有前景的癌症替代疗法,它结合了更强的稳定性和靶向抗肿瘤活性,有可能克服传统疗法的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antitumoral melatonin-loaded nanostructured lipid carriers.

Aim: Cancer constitutes the second leading cause of death worldwide, with conventional therapies limited by significant side effects. Melatonin (MEL), a natural compound with antitumoral properties, suffers from instability and low solubility. To overcome these issues, MEL was encapsulated into nanostructured lipid carriers (MEL-NLC) containing rosehip oil to enhance stability and boost its antitumoral activity. Methods: MEL-NLC were optimized by a design of experiments approach and characterized for their physicochemical properties. Stability and biopharmaceutical behavior were assessed, along with interaction studies and in vitro antitumoral efficacy against various cancer cell lines. Results: Optimized MEL-NLC exhibited desirable physicochemical characteristics, including small particle size and sustained MEL release, along with long-term stability. In vitro studies demonstrated that MEL-NLC selectively induced cytotoxicity in several cancer cell lines while sparing healthy cells. Conclusion: MEL-NLC represent a promising alternative for cancer, combining enhanced stability and targeted antitumoral activity, potentially overcoming the limitations of conventional treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信