{"title":"水果和蔬菜摄入量可改变超加工食品与代谢综合征之间的关联。","authors":"Somayeh Hosseinpour-Niazi, Hanieh Malmir, Parvin Mirmiran, Maryam Shabani, Mitra Hasheminia, Fereidoun Azizi","doi":"10.1186/s12986-024-00831-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This prospective cohort study aimed to investigate the association between ultra-processed food (UPF) and the risk of metabolic syndrome (MetS), as well as to assess whether fruit and vegetable intake and weight change modify this association.</p><p><strong>Methods: </strong>We included 1915 healthy participants who participated in the Tehran Lipid and Glucose Study (TLGS), all of whom had complete demographic, anthropometric, and dietary measurements. A validated food frequency questionnaire was used to assess UPF consumption based on the NOVA classification system. MetS was defined according to the Joint Interim Statement. Multivariable adjusted Cox regression was used to estimate hazard ratios (HRs) for MetS events across tertiles of UPF. The effect of fruit and vegetable consumption and weight change on this association was assessed using joint classification by Cox regression.</p><p><strong>Results: </strong>UFP consumption showed no association with MetS risk after adjusting for confounders. However, after adjustment for dietary fiber, fruits, and vegetables, the highest tertile of UPF consumption was positively linked to MetS risk, compared to the lowest tertile. There was a significant interaction between fruit, vegetable, and dietary fiber intake and UPF consumption concerning the risk of MetS (All P values < 0.05). Among individuals consuming less than 248 g/day of fruit, the risk of MetS increased by 54% (confidence interval: 1.13-2.10) in the highest UPF tertile. Consuming vegetables and dietary fiber below the median (258 g/day and 42.2 g/day, respectively) increased the risk of MetS in the third tertile of UPF. However, consuming vegetables and fiber ≥ median intake, reduced the risk of MetS among those with the lowest UPF consumption. Furthermore, the risk of MetS was observed in the third tertile of UPF consumption among individuals with fruit and vegetable consumption < 537 g/day. UPF consumption was not associated with the risk of MetS in different weight change statuses.</p><p><strong>Conclusions: </strong>Consuming more fruits and vegetables mitigated the adverse effect of UPF on the risk of developing MetS.</p>","PeriodicalId":19196,"journal":{"name":"Nutrition & Metabolism","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292914/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fruit and vegetable intake modifies the association between ultra-processed food and metabolic syndrome.\",\"authors\":\"Somayeh Hosseinpour-Niazi, Hanieh Malmir, Parvin Mirmiran, Maryam Shabani, Mitra Hasheminia, Fereidoun Azizi\",\"doi\":\"10.1186/s12986-024-00831-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This prospective cohort study aimed to investigate the association between ultra-processed food (UPF) and the risk of metabolic syndrome (MetS), as well as to assess whether fruit and vegetable intake and weight change modify this association.</p><p><strong>Methods: </strong>We included 1915 healthy participants who participated in the Tehran Lipid and Glucose Study (TLGS), all of whom had complete demographic, anthropometric, and dietary measurements. A validated food frequency questionnaire was used to assess UPF consumption based on the NOVA classification system. MetS was defined according to the Joint Interim Statement. Multivariable adjusted Cox regression was used to estimate hazard ratios (HRs) for MetS events across tertiles of UPF. The effect of fruit and vegetable consumption and weight change on this association was assessed using joint classification by Cox regression.</p><p><strong>Results: </strong>UFP consumption showed no association with MetS risk after adjusting for confounders. However, after adjustment for dietary fiber, fruits, and vegetables, the highest tertile of UPF consumption was positively linked to MetS risk, compared to the lowest tertile. There was a significant interaction between fruit, vegetable, and dietary fiber intake and UPF consumption concerning the risk of MetS (All P values < 0.05). Among individuals consuming less than 248 g/day of fruit, the risk of MetS increased by 54% (confidence interval: 1.13-2.10) in the highest UPF tertile. Consuming vegetables and dietary fiber below the median (258 g/day and 42.2 g/day, respectively) increased the risk of MetS in the third tertile of UPF. However, consuming vegetables and fiber ≥ median intake, reduced the risk of MetS among those with the lowest UPF consumption. Furthermore, the risk of MetS was observed in the third tertile of UPF consumption among individuals with fruit and vegetable consumption < 537 g/day. UPF consumption was not associated with the risk of MetS in different weight change statuses.</p><p><strong>Conclusions: </strong>Consuming more fruits and vegetables mitigated the adverse effect of UPF on the risk of developing MetS.</p>\",\"PeriodicalId\":19196,\"journal\":{\"name\":\"Nutrition & Metabolism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292914/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12986-024-00831-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12986-024-00831-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Fruit and vegetable intake modifies the association between ultra-processed food and metabolic syndrome.
Background: This prospective cohort study aimed to investigate the association between ultra-processed food (UPF) and the risk of metabolic syndrome (MetS), as well as to assess whether fruit and vegetable intake and weight change modify this association.
Methods: We included 1915 healthy participants who participated in the Tehran Lipid and Glucose Study (TLGS), all of whom had complete demographic, anthropometric, and dietary measurements. A validated food frequency questionnaire was used to assess UPF consumption based on the NOVA classification system. MetS was defined according to the Joint Interim Statement. Multivariable adjusted Cox regression was used to estimate hazard ratios (HRs) for MetS events across tertiles of UPF. The effect of fruit and vegetable consumption and weight change on this association was assessed using joint classification by Cox regression.
Results: UFP consumption showed no association with MetS risk after adjusting for confounders. However, after adjustment for dietary fiber, fruits, and vegetables, the highest tertile of UPF consumption was positively linked to MetS risk, compared to the lowest tertile. There was a significant interaction between fruit, vegetable, and dietary fiber intake and UPF consumption concerning the risk of MetS (All P values < 0.05). Among individuals consuming less than 248 g/day of fruit, the risk of MetS increased by 54% (confidence interval: 1.13-2.10) in the highest UPF tertile. Consuming vegetables and dietary fiber below the median (258 g/day and 42.2 g/day, respectively) increased the risk of MetS in the third tertile of UPF. However, consuming vegetables and fiber ≥ median intake, reduced the risk of MetS among those with the lowest UPF consumption. Furthermore, the risk of MetS was observed in the third tertile of UPF consumption among individuals with fruit and vegetable consumption < 537 g/day. UPF consumption was not associated with the risk of MetS in different weight change statuses.
Conclusions: Consuming more fruits and vegetables mitigated the adverse effect of UPF on the risk of developing MetS.
期刊介绍:
Nutrition & Metabolism publishes studies with a clear focus on nutrition and metabolism with applications ranging from nutrition needs, exercise physiology, clinical and population studies, as well as the underlying mechanisms in these aspects.
The areas of interest for Nutrition & Metabolism encompass studies in molecular nutrition in the context of obesity, diabetes, lipedemias, metabolic syndrome and exercise physiology. Manuscripts related to molecular, cellular and human metabolism, nutrient sensing and nutrient–gene interactions are also in interest, as are submissions that have employed new and innovative strategies like metabolomics/lipidomics or other omic-based biomarkers to predict nutritional status and metabolic diseases.
Key areas we wish to encourage submissions from include:
-how diet and specific nutrients interact with genes, proteins or metabolites to influence metabolic phenotypes and disease outcomes;
-the role of epigenetic factors and the microbiome in the pathogenesis of metabolic diseases and their influence on metabolic responses to diet and food components;
-how diet and other environmental factors affect epigenetics and microbiota; the extent to which genetic and nongenetic factors modify personal metabolic responses to diet and food compositions and the mechanisms involved;
-how specific biologic networks and nutrient sensing mechanisms attribute to metabolic variability.