{"title":"基于磁共振成像诊断颞叶癫痫的进展:海马亚区体积与组织病理学的相关性。","authors":"Andrea C. Ellsay, Gavin P. Winston","doi":"10.1111/jon.13225","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Epilepsy, affecting 0.5%-1% of the global population, presents a significant challenge with 30% of patients resistant to medical treatment. Temporal lobe epilepsy, a common cause of medically refractory epilepsy, is often caused by hippocampal sclerosis (HS). HS can be divided further by subtype, as defined by the International League Against Epilepsy (ILAE). Type 1 HS, the most prevalent form (60%-80% of all cases), is characterized by cell loss and gliosis predominantly in the subfields cornu ammonis (CA1) and CA4. Type 2 HS features cell loss and gliosis primarily in the CA1 sector, and type 3 HS features cell loss and gliosis predominantly in the CA4 subfield. This literature review evaluates studies on hippocampal subfields, exploring whether observable atrophy patterns from in vivo and ex vivo magnetic resonance imaging (MRI) scans correlate with histopathological examinations with manual or automated segmentation techniques. Our findings suggest only ex vivo 1.5 Tesla (T) or 3T MRI with manual segmentation or in vivo 7T MRI with manual or automated segmentations can consistently correlate subfield patterns with histopathologically derived ILAE-HS subtypes. In conclusion, manual and automated segmentation methods offer advantages and limitations in diagnosing ILAE-HS subtypes, with ongoing research crucial for refining hippocampal subfield segmentation techniques and enhancing clinical applicability.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 5","pages":"515-526"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13225","citationCount":"0","resultStr":"{\"title\":\"Advances in MRI-based diagnosis of temporal lobe epilepsy: Correlating hippocampal subfield volumes with histopathology\",\"authors\":\"Andrea C. Ellsay, Gavin P. Winston\",\"doi\":\"10.1111/jon.13225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Epilepsy, affecting 0.5%-1% of the global population, presents a significant challenge with 30% of patients resistant to medical treatment. Temporal lobe epilepsy, a common cause of medically refractory epilepsy, is often caused by hippocampal sclerosis (HS). HS can be divided further by subtype, as defined by the International League Against Epilepsy (ILAE). Type 1 HS, the most prevalent form (60%-80% of all cases), is characterized by cell loss and gliosis predominantly in the subfields cornu ammonis (CA1) and CA4. Type 2 HS features cell loss and gliosis primarily in the CA1 sector, and type 3 HS features cell loss and gliosis predominantly in the CA4 subfield. This literature review evaluates studies on hippocampal subfields, exploring whether observable atrophy patterns from in vivo and ex vivo magnetic resonance imaging (MRI) scans correlate with histopathological examinations with manual or automated segmentation techniques. Our findings suggest only ex vivo 1.5 Tesla (T) or 3T MRI with manual segmentation or in vivo 7T MRI with manual or automated segmentations can consistently correlate subfield patterns with histopathologically derived ILAE-HS subtypes. In conclusion, manual and automated segmentation methods offer advantages and limitations in diagnosing ILAE-HS subtypes, with ongoing research crucial for refining hippocampal subfield segmentation techniques and enhancing clinical applicability.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"34 5\",\"pages\":\"515-526\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13225\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.13225\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13225","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Advances in MRI-based diagnosis of temporal lobe epilepsy: Correlating hippocampal subfield volumes with histopathology
Epilepsy, affecting 0.5%-1% of the global population, presents a significant challenge with 30% of patients resistant to medical treatment. Temporal lobe epilepsy, a common cause of medically refractory epilepsy, is often caused by hippocampal sclerosis (HS). HS can be divided further by subtype, as defined by the International League Against Epilepsy (ILAE). Type 1 HS, the most prevalent form (60%-80% of all cases), is characterized by cell loss and gliosis predominantly in the subfields cornu ammonis (CA1) and CA4. Type 2 HS features cell loss and gliosis primarily in the CA1 sector, and type 3 HS features cell loss and gliosis predominantly in the CA4 subfield. This literature review evaluates studies on hippocampal subfields, exploring whether observable atrophy patterns from in vivo and ex vivo magnetic resonance imaging (MRI) scans correlate with histopathological examinations with manual or automated segmentation techniques. Our findings suggest only ex vivo 1.5 Tesla (T) or 3T MRI with manual segmentation or in vivo 7T MRI with manual or automated segmentations can consistently correlate subfield patterns with histopathologically derived ILAE-HS subtypes. In conclusion, manual and automated segmentation methods offer advantages and limitations in diagnosing ILAE-HS subtypes, with ongoing research crucial for refining hippocampal subfield segmentation techniques and enhancing clinical applicability.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!