混合毛囊干细胞细胞外囊泡共同释放非那雄胺和纳米金颗粒,用于雄激素性脱发的治疗。

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"混合毛囊干细胞细胞外囊泡共同释放非那雄胺和纳米金颗粒,用于雄激素性脱发的治疗。","authors":"","doi":"10.1016/j.jconrel.2024.07.066","DOIUrl":null,"url":null,"abstract":"<div><p>Androgenetic alopecia (AGA) is a non-fatal disease prevalent worldwide. However, mixed efficacy has been observed among different therapies for hair regrowth in AGA patients. Thus, a nano-platform with synergistic treatments based on a hybrid extracellular vesicle encapsulating gold nanoparticles (AuNPs) and finasteride (Hybrid/Au@Fi) was constructed through membrane fusion between hair follicle stem cell (HFSC)-derived extracellular vesicles and liposomes. These hybrid vesicles (HVs) not only fuel hair regrowth by providing cellular signals in extracellular vesicles, but also improve storage stability, follicle retention, and drug encapsulation efficiency (EE%) for finasteride inhibiting 5α-reductase, and nano-size AuNPs that simulate low-level laser therapy (LLLT) with similar photothermal effects in vitro. The EE% of finasteride in these HVs reached 45.33%. The dual administration of these extracellular vesicles and finasteride showed a strong synergistic effect on HFSCs in vitro. In an AGA mouse model, once-daily topical Hybrid/Au@Fi (115.07 ± 0.32 nm, −7.50 ± 1.68 mV) gel led to a faster transition of hair follicles (HFs) from the catagen to the anagen, increased hair regrowth coverage, and higher quality of regrowth hair, compared to once-daily 5% minoxidil treatment. Compared to topical minoxidil, the multifaceted synergistic therapy of Hybrid/Au@Fi through topical administration offers a new option for intractable AGA patients with low side effects.</p></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid hair follicle stem cell extracellular vesicles co-delivering finasteride and gold nanoparticles for androgenetic alopecia treatment\",\"authors\":\"\",\"doi\":\"10.1016/j.jconrel.2024.07.066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Androgenetic alopecia (AGA) is a non-fatal disease prevalent worldwide. However, mixed efficacy has been observed among different therapies for hair regrowth in AGA patients. Thus, a nano-platform with synergistic treatments based on a hybrid extracellular vesicle encapsulating gold nanoparticles (AuNPs) and finasteride (Hybrid/Au@Fi) was constructed through membrane fusion between hair follicle stem cell (HFSC)-derived extracellular vesicles and liposomes. These hybrid vesicles (HVs) not only fuel hair regrowth by providing cellular signals in extracellular vesicles, but also improve storage stability, follicle retention, and drug encapsulation efficiency (EE%) for finasteride inhibiting 5α-reductase, and nano-size AuNPs that simulate low-level laser therapy (LLLT) with similar photothermal effects in vitro. The EE% of finasteride in these HVs reached 45.33%. The dual administration of these extracellular vesicles and finasteride showed a strong synergistic effect on HFSCs in vitro. In an AGA mouse model, once-daily topical Hybrid/Au@Fi (115.07 ± 0.32 nm, −7.50 ± 1.68 mV) gel led to a faster transition of hair follicles (HFs) from the catagen to the anagen, increased hair regrowth coverage, and higher quality of regrowth hair, compared to once-daily 5% minoxidil treatment. Compared to topical minoxidil, the multifaceted synergistic therapy of Hybrid/Au@Fi through topical administration offers a new option for intractable AGA patients with low side effects.</p></div>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168365924005248\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365924005248","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

雄激素性脱发(AGA)是一种非致命性疾病,在全球普遍流行。然而,不同疗法对 AGA 患者头发再生的疗效参差不齐。因此,通过毛囊干细胞(HFSC)衍生的细胞外囊泡和脂质体之间的膜融合,构建了一种基于包裹金纳米粒子(AuNPs)和非那雄胺的混合细胞外囊泡(Hybrid/Au@Fi)的纳米平台,该平台具有协同治疗作用。这些混合囊泡不仅通过在细胞外囊泡中提供细胞信号来促进毛发再生,而且还提高了非那雄胺的储存稳定性、毛囊保留率和药物封装效率(EE%),非那雄胺可抑制5α还原酶,而纳米尺寸的金纳米粒子可模拟低水平激光疗法(LLLT),在体外具有类似的光热效应。非那雄胺在这些 HV 中的 EE% 达到了 45.33%。这些细胞外小泡和非那雄胺的双重给药在体外对高频间充质干细胞有很强的协同作用。在AGA小鼠模型中,与每天一次的5%米诺西地治疗相比,每天一次的局部Hybrid/Au@Fi(115.07 ± 0.32 nm, -7.50 ± 1.68 mV)凝胶能使毛囊(HFs)更快地从生长期过渡到生长期,增加毛发再生覆盖率,并提高再生毛发的质量。与局部使用米诺地尔相比,Hybrid/Au@Fi通过局部给药的多方面协同疗法为难治性AGA患者提供了一种副作用小的新选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid hair follicle stem cell extracellular vesicles co-delivering finasteride and gold nanoparticles for androgenetic alopecia treatment

Hybrid hair follicle stem cell extracellular vesicles co-delivering finasteride and gold nanoparticles for androgenetic alopecia treatment

Androgenetic alopecia (AGA) is a non-fatal disease prevalent worldwide. However, mixed efficacy has been observed among different therapies for hair regrowth in AGA patients. Thus, a nano-platform with synergistic treatments based on a hybrid extracellular vesicle encapsulating gold nanoparticles (AuNPs) and finasteride (Hybrid/Au@Fi) was constructed through membrane fusion between hair follicle stem cell (HFSC)-derived extracellular vesicles and liposomes. These hybrid vesicles (HVs) not only fuel hair regrowth by providing cellular signals in extracellular vesicles, but also improve storage stability, follicle retention, and drug encapsulation efficiency (EE%) for finasteride inhibiting 5α-reductase, and nano-size AuNPs that simulate low-level laser therapy (LLLT) with similar photothermal effects in vitro. The EE% of finasteride in these HVs reached 45.33%. The dual administration of these extracellular vesicles and finasteride showed a strong synergistic effect on HFSCs in vitro. In an AGA mouse model, once-daily topical Hybrid/Au@Fi (115.07 ± 0.32 nm, −7.50 ± 1.68 mV) gel led to a faster transition of hair follicles (HFs) from the catagen to the anagen, increased hair regrowth coverage, and higher quality of regrowth hair, compared to once-daily 5% minoxidil treatment. Compared to topical minoxidil, the multifaceted synergistic therapy of Hybrid/Au@Fi through topical administration offers a new option for intractable AGA patients with low side effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信