Pan Guo , Quanwei Li , Shaofeng Wang , Xinyue Jiang , Qingwen Yang , Wenlan Yu , Khalid Awadh Al-Mutairi , Zhaoxin Tang , Qingyue Han , Jianzhao Liao
{"title":"橙皮甙可通过维持鸡肝细胞线粒体相关内质网膜的完整性来缓解特丁基嗪诱导的铁中毒。","authors":"Pan Guo , Quanwei Li , Shaofeng Wang , Xinyue Jiang , Qingwen Yang , Wenlan Yu , Khalid Awadh Al-Mutairi , Zhaoxin Tang , Qingyue Han , Jianzhao Liao","doi":"10.1016/j.cbpc.2024.109989","DOIUrl":null,"url":null,"abstract":"<div><p>Terbuthylazine (TBA) is a common triazine herbicide used in agricultural production, which causes toxic damage in multiple tissues. Hesperidin (HSP) is a flavonoid derivative that has anti-inflammatory, antioxidant and cytoprotective effects, but its role in reducing toxic damage caused by pesticides is still unclear. In this study, we aimed to investigate the toxic effect of TBA exposure on chicken hepatocytes and the therapeutic effect of HSP on the TBA-induced hepatotoxicity. Our results demonstrated that HSP could alleviate TBA exposure-induced endoplasmic reticulum (ER) stress. Interestingly, TBA significantly disrupted the integrity of mitochondria-associated endoplasmic reticulum membrane (MAM), while HSP treatment showed the opposite tendency. In addition, TBA could significantly trigger ferroptosis in liver, and HSP treatment reversed ferroptosis under TBA exposure. These results suggested that HSP could inhibit ER stress and alleviate ferroptosis under TBA exposure via maintaining MAM integrity, which provided a novel strategy to take precautions against TBA toxicity.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"284 ","pages":"Article 109989"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hesperidin alleviates terbuthylazine-induced ferroptosis via maintenance of mitochondria-associated endoplasmic reticulum membrane integrity in chicken hepatocytes\",\"authors\":\"Pan Guo , Quanwei Li , Shaofeng Wang , Xinyue Jiang , Qingwen Yang , Wenlan Yu , Khalid Awadh Al-Mutairi , Zhaoxin Tang , Qingyue Han , Jianzhao Liao\",\"doi\":\"10.1016/j.cbpc.2024.109989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Terbuthylazine (TBA) is a common triazine herbicide used in agricultural production, which causes toxic damage in multiple tissues. Hesperidin (HSP) is a flavonoid derivative that has anti-inflammatory, antioxidant and cytoprotective effects, but its role in reducing toxic damage caused by pesticides is still unclear. In this study, we aimed to investigate the toxic effect of TBA exposure on chicken hepatocytes and the therapeutic effect of HSP on the TBA-induced hepatotoxicity. Our results demonstrated that HSP could alleviate TBA exposure-induced endoplasmic reticulum (ER) stress. Interestingly, TBA significantly disrupted the integrity of mitochondria-associated endoplasmic reticulum membrane (MAM), while HSP treatment showed the opposite tendency. In addition, TBA could significantly trigger ferroptosis in liver, and HSP treatment reversed ferroptosis under TBA exposure. These results suggested that HSP could inhibit ER stress and alleviate ferroptosis under TBA exposure via maintaining MAM integrity, which provided a novel strategy to take precautions against TBA toxicity.</p></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":\"284 \",\"pages\":\"Article 109989\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624001571\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624001571","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Hesperidin alleviates terbuthylazine-induced ferroptosis via maintenance of mitochondria-associated endoplasmic reticulum membrane integrity in chicken hepatocytes
Terbuthylazine (TBA) is a common triazine herbicide used in agricultural production, which causes toxic damage in multiple tissues. Hesperidin (HSP) is a flavonoid derivative that has anti-inflammatory, antioxidant and cytoprotective effects, but its role in reducing toxic damage caused by pesticides is still unclear. In this study, we aimed to investigate the toxic effect of TBA exposure on chicken hepatocytes and the therapeutic effect of HSP on the TBA-induced hepatotoxicity. Our results demonstrated that HSP could alleviate TBA exposure-induced endoplasmic reticulum (ER) stress. Interestingly, TBA significantly disrupted the integrity of mitochondria-associated endoplasmic reticulum membrane (MAM), while HSP treatment showed the opposite tendency. In addition, TBA could significantly trigger ferroptosis in liver, and HSP treatment reversed ferroptosis under TBA exposure. These results suggested that HSP could inhibit ER stress and alleviate ferroptosis under TBA exposure via maintaining MAM integrity, which provided a novel strategy to take precautions against TBA toxicity.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.