{"title":"DEAD/H-box螺旋酶11被阴阳-1转录激活,并加速口腔鳞状细胞癌的进展。","authors":"Guang Yang, Xin Shi, Meixia Zhang, Kaiwen Wang, Xin Tian, Xiaofeng Wang","doi":"10.1002/cbin.12228","DOIUrl":null,"url":null,"abstract":"<p>Oral squamous cell carcinoma (OSCC) is the most common oral malignancy. DEAD/H-box helicase 11 (DDX11), a DNA helicase, has been implicated in the progression of several cancers. Yet, the precise function of DDX11 in OSCC is poorly understood. The DDX11 expression in OSCC cells and normal oral keratinocytes was evaluated in the Gene Expression Omnibus database (GSE146483 and GSE31853). SCC-4 and CAL-27 cells expressing doxycycline-inducible DDX11 or DDX11 shRNA were generated by lentiviral infection. The role of DDX11 in OSCC cells was determined by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, colony formation assay, flow cytometry assay, TUNEL staining, and western blot. The effects of DDX11 on tumor growth were explored in a xenograft nude mouse model. The relationship between DDX11 and transcription factor Yin Yang-1 (YY1) was researched using the dual luciferase report assay and chromatin immunoprecipitation assay. DDX11 expression was significantly upregulated in OSCC cells. Knockdown of DDX11 inhibited cell proliferation, induced cell cycle arrest, and suppressed PI3K-AKT pathway, while DDX11 overexpression showed opposite effects. The number of apoptotic cells was increased in DDX11 silenced cells. DDX11 upregulation or knockdown accelerated or suppressed tumor growth in vivo, respectively. Moreover, the YY1 bound and activated the DDX11 promoter, resulting in increasing DDX11 expression. Forced expression DDX11 reversed the anticancer effects of YY1 silencing on OSCC cells. DDX11 has tumor-promoting function in OSCC and is transcriptionally regulated by YY1, indicating that DDX11 may serve as a potential target for the OSCC treatment.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 11","pages":"1731-1742"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEAD/H-box helicase 11 is transcriptionally activated by Yin Yang-1 and accelerates oral squamous cell carcinoma progression\",\"authors\":\"Guang Yang, Xin Shi, Meixia Zhang, Kaiwen Wang, Xin Tian, Xiaofeng Wang\",\"doi\":\"10.1002/cbin.12228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oral squamous cell carcinoma (OSCC) is the most common oral malignancy. DEAD/H-box helicase 11 (DDX11), a DNA helicase, has been implicated in the progression of several cancers. Yet, the precise function of DDX11 in OSCC is poorly understood. The DDX11 expression in OSCC cells and normal oral keratinocytes was evaluated in the Gene Expression Omnibus database (GSE146483 and GSE31853). SCC-4 and CAL-27 cells expressing doxycycline-inducible DDX11 or DDX11 shRNA were generated by lentiviral infection. The role of DDX11 in OSCC cells was determined by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, colony formation assay, flow cytometry assay, TUNEL staining, and western blot. The effects of DDX11 on tumor growth were explored in a xenograft nude mouse model. The relationship between DDX11 and transcription factor Yin Yang-1 (YY1) was researched using the dual luciferase report assay and chromatin immunoprecipitation assay. DDX11 expression was significantly upregulated in OSCC cells. Knockdown of DDX11 inhibited cell proliferation, induced cell cycle arrest, and suppressed PI3K-AKT pathway, while DDX11 overexpression showed opposite effects. The number of apoptotic cells was increased in DDX11 silenced cells. DDX11 upregulation or knockdown accelerated or suppressed tumor growth in vivo, respectively. Moreover, the YY1 bound and activated the DDX11 promoter, resulting in increasing DDX11 expression. Forced expression DDX11 reversed the anticancer effects of YY1 silencing on OSCC cells. DDX11 has tumor-promoting function in OSCC and is transcriptionally regulated by YY1, indicating that DDX11 may serve as a potential target for the OSCC treatment.</p>\",\"PeriodicalId\":9806,\"journal\":{\"name\":\"Cell Biology International\",\"volume\":\"48 11\",\"pages\":\"1731-1742\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology International\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12228\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12228","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
DEAD/H-box helicase 11 is transcriptionally activated by Yin Yang-1 and accelerates oral squamous cell carcinoma progression
Oral squamous cell carcinoma (OSCC) is the most common oral malignancy. DEAD/H-box helicase 11 (DDX11), a DNA helicase, has been implicated in the progression of several cancers. Yet, the precise function of DDX11 in OSCC is poorly understood. The DDX11 expression in OSCC cells and normal oral keratinocytes was evaluated in the Gene Expression Omnibus database (GSE146483 and GSE31853). SCC-4 and CAL-27 cells expressing doxycycline-inducible DDX11 or DDX11 shRNA were generated by lentiviral infection. The role of DDX11 in OSCC cells was determined by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, colony formation assay, flow cytometry assay, TUNEL staining, and western blot. The effects of DDX11 on tumor growth were explored in a xenograft nude mouse model. The relationship between DDX11 and transcription factor Yin Yang-1 (YY1) was researched using the dual luciferase report assay and chromatin immunoprecipitation assay. DDX11 expression was significantly upregulated in OSCC cells. Knockdown of DDX11 inhibited cell proliferation, induced cell cycle arrest, and suppressed PI3K-AKT pathway, while DDX11 overexpression showed opposite effects. The number of apoptotic cells was increased in DDX11 silenced cells. DDX11 upregulation or knockdown accelerated or suppressed tumor growth in vivo, respectively. Moreover, the YY1 bound and activated the DDX11 promoter, resulting in increasing DDX11 expression. Forced expression DDX11 reversed the anticancer effects of YY1 silencing on OSCC cells. DDX11 has tumor-promoting function in OSCC and is transcriptionally regulated by YY1, indicating that DDX11 may serve as a potential target for the OSCC treatment.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.