有证据表明,StlA 多酮类化合物合成酶是多孔菌(Polysphondylium violaceum)从生长到发育过渡所必需的。

IF 1.4 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Daiki T Yamasaki, Takaaki B Narita
{"title":"有证据表明,StlA 多酮类化合物合成酶是多孔菌(Polysphondylium violaceum)从生长到发育过渡所必需的。","authors":"Daiki T Yamasaki, Takaaki B Narita","doi":"10.1093/bbb/zbae108","DOIUrl":null,"url":null,"abstract":"<p><p>The social amoeba Polysphondylium violaceum uses chemoattractants different from those of Dictyoctelium discoideum for cell aggregation. However, the detailed mechanisms in P. violaceum remain unknown. We have previously reported that the polyketide synthase StlA is involved in inducing aggregation in this species. To elucidate the mechanism of StlA-induced aggregation in P. violaceum, we analyzed the phenotype of P. violaceum stlA- (Pv-stlA-) mutants in more detail. Unlike our previous results, the mutant cells did not exhibit proper chemotaxis toward glorin. Defective aggregation was not restored by glorin pulses, 8Br-cAMP, or deletion of the homologue of PufA that is a translational repressor of protein kinase A, whereas mutant cells grown in the presence of 4-methyl-5-pentylbenzene-1,3-diol (MPBD), the putative Pv-StlA product, aggregated normally without it after starvation. Furthermore, the early developmental marker gene, dscA, was downregulated in the mutant cells. Our data thus suggested that StlA is required for the transition from growth to development in P. violaceum.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"1362-1369"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence that the StlA polyketide synthase is required for the transition of growth to development in Polysphondylium violaceum.\",\"authors\":\"Daiki T Yamasaki, Takaaki B Narita\",\"doi\":\"10.1093/bbb/zbae108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The social amoeba Polysphondylium violaceum uses chemoattractants different from those of Dictyoctelium discoideum for cell aggregation. However, the detailed mechanisms in P. violaceum remain unknown. We have previously reported that the polyketide synthase StlA is involved in inducing aggregation in this species. To elucidate the mechanism of StlA-induced aggregation in P. violaceum, we analyzed the phenotype of P. violaceum stlA- (Pv-stlA-) mutants in more detail. Unlike our previous results, the mutant cells did not exhibit proper chemotaxis toward glorin. Defective aggregation was not restored by glorin pulses, 8Br-cAMP, or deletion of the homologue of PufA that is a translational repressor of protein kinase A, whereas mutant cells grown in the presence of 4-methyl-5-pentylbenzene-1,3-diol (MPBD), the putative Pv-StlA product, aggregated normally without it after starvation. Furthermore, the early developmental marker gene, dscA, was downregulated in the mutant cells. Our data thus suggested that StlA is required for the transition from growth to development in P. violaceum.</p>\",\"PeriodicalId\":9175,\"journal\":{\"name\":\"Bioscience, Biotechnology, and Biochemistry\",\"volume\":\" \",\"pages\":\"1362-1369\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience, Biotechnology, and Biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbae108\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae108","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

社会阿米巴多孔虫(Polysphondylium violaceum)在细胞聚集时使用的趋化吸引物与盘状双壳阿米巴多孔虫(Dictyoctelium discoideum)不同。然而,小球藻的详细机制仍不为人知。我们以前曾报道过,多酮合成酶 StlA 参与了该物种的聚集诱导。为了弄清 StlA 诱导暴牙藻聚集的机制,我们对 Pv-stlA- 突变体的表型进行了更详细的分析。与我们之前的研究结果不同,突变体细胞没有表现出正确的趋光性。而在有 4-甲基-5-戊基苯-1,3-二醇(MPBD)(Pv-StlA 的假定产物)存在的情况下生长的突变体细胞,在饥饿后没有 MPBD 也能正常聚集。此外,突变体细胞中的早期发育标记基因dscA下调。因此,我们的数据表明,StlA 是 P. violaceum 从生长过渡到发育所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evidence that the StlA polyketide synthase is required for the transition of growth to development in Polysphondylium violaceum.

The social amoeba Polysphondylium violaceum uses chemoattractants different from those of Dictyoctelium discoideum for cell aggregation. However, the detailed mechanisms in P. violaceum remain unknown. We have previously reported that the polyketide synthase StlA is involved in inducing aggregation in this species. To elucidate the mechanism of StlA-induced aggregation in P. violaceum, we analyzed the phenotype of P. violaceum stlA- (Pv-stlA-) mutants in more detail. Unlike our previous results, the mutant cells did not exhibit proper chemotaxis toward glorin. Defective aggregation was not restored by glorin pulses, 8Br-cAMP, or deletion of the homologue of PufA that is a translational repressor of protein kinase A, whereas mutant cells grown in the presence of 4-methyl-5-pentylbenzene-1,3-diol (MPBD), the putative Pv-StlA product, aggregated normally without it after starvation. Furthermore, the early developmental marker gene, dscA, was downregulated in the mutant cells. Our data thus suggested that StlA is required for the transition from growth to development in P. violaceum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioscience, Biotechnology, and Biochemistry
Bioscience, Biotechnology, and Biochemistry 生物-生化与分子生物学
CiteScore
3.50
自引率
0.00%
发文量
183
审稿时长
1 months
期刊介绍: Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信