Cheolwoo Bong, Seong-Kyun Im, Hyungrok Do, Moon Soo Bak
{"title":"快讯:利用机器学习从少量吸收光谱估算漩涡燃烧器的全局等效比。","authors":"Cheolwoo Bong, Seong-Kyun Im, Hyungrok Do, Moon Soo Bak","doi":"10.1177/00037028241268279","DOIUrl":null,"url":null,"abstract":"<p><p>A new optical diagnostic method that predicts the global fuel-air equivalence ratio of a swirl combustor using absorption spectra from only three optical paths is proposed here. Under normal operation, the global equivalence ratio and total flow rate determine the temperature and concentration fields of the combustor, which subsequently determine the absorption spectra of any combustion species. Therefore, spectra, as the fingerprint for a produced combustion field, were employed to predict the global equivalence ratio, one of the key operational parameters, in this study. Specifically, absorption spectra of water vapor at wavenumbers around 7444.36, 7185.6, and 6805.6 cm<sup>-1</sup> measured at three different downstream locations of the combustor were used to predict the global equivalence ratio. As it is difficult to find analytical relationships between the spectra and produced combustion fields, a predictive model was a data-driven acquisition. The absorption spectra as an input were first feature-extracted through stacked convolutional autoencoders and then a dense neural network was used for regression prediction between the feature scores and the global equivalence ratio. The model could predict the equivalence ratio with an absolute error of ±0.025 with a probability of 96%, and a gradient-weighted regression activation mapping analysis revealed that the model leverages not only the peak intensities but also the variations in the shape of absorption lines for its predictions.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1078-1088"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of the Global Equivalence Ratio of a Swirl Combustor from a Small Number of Absorption Spectra Using Machine Learning.\",\"authors\":\"Cheolwoo Bong, Seong-Kyun Im, Hyungrok Do, Moon Soo Bak\",\"doi\":\"10.1177/00037028241268279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new optical diagnostic method that predicts the global fuel-air equivalence ratio of a swirl combustor using absorption spectra from only three optical paths is proposed here. Under normal operation, the global equivalence ratio and total flow rate determine the temperature and concentration fields of the combustor, which subsequently determine the absorption spectra of any combustion species. Therefore, spectra, as the fingerprint for a produced combustion field, were employed to predict the global equivalence ratio, one of the key operational parameters, in this study. Specifically, absorption spectra of water vapor at wavenumbers around 7444.36, 7185.6, and 6805.6 cm<sup>-1</sup> measured at three different downstream locations of the combustor were used to predict the global equivalence ratio. As it is difficult to find analytical relationships between the spectra and produced combustion fields, a predictive model was a data-driven acquisition. The absorption spectra as an input were first feature-extracted through stacked convolutional autoencoders and then a dense neural network was used for regression prediction between the feature scores and the global equivalence ratio. The model could predict the equivalence ratio with an absolute error of ±0.025 with a probability of 96%, and a gradient-weighted regression activation mapping analysis revealed that the model leverages not only the peak intensities but also the variations in the shape of absorption lines for its predictions.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"1078-1088\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028241268279\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241268279","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Estimation of the Global Equivalence Ratio of a Swirl Combustor from a Small Number of Absorption Spectra Using Machine Learning.
A new optical diagnostic method that predicts the global fuel-air equivalence ratio of a swirl combustor using absorption spectra from only three optical paths is proposed here. Under normal operation, the global equivalence ratio and total flow rate determine the temperature and concentration fields of the combustor, which subsequently determine the absorption spectra of any combustion species. Therefore, spectra, as the fingerprint for a produced combustion field, were employed to predict the global equivalence ratio, one of the key operational parameters, in this study. Specifically, absorption spectra of water vapor at wavenumbers around 7444.36, 7185.6, and 6805.6 cm-1 measured at three different downstream locations of the combustor were used to predict the global equivalence ratio. As it is difficult to find analytical relationships between the spectra and produced combustion fields, a predictive model was a data-driven acquisition. The absorption spectra as an input were first feature-extracted through stacked convolutional autoencoders and then a dense neural network was used for regression prediction between the feature scores and the global equivalence ratio. The model could predict the equivalence ratio with an absolute error of ±0.025 with a probability of 96%, and a gradient-weighted regression activation mapping analysis revealed that the model leverages not only the peak intensities but also the variations in the shape of absorption lines for its predictions.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”