多面体域上四曲面问题的霍奇分解有限元法

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Susanne C. Brenner, Casey Cavanaugh, Li-yeng Sung
{"title":"多面体域上四曲面问题的霍奇分解有限元法","authors":"Susanne C. Brenner, Casey Cavanaugh, Li-yeng Sung","doi":"10.1007/s10915-024-02626-x","DOIUrl":null,"url":null,"abstract":"<p>We design a finite element method for the quad-curl problem on three dimensional Lipschitz polyhedral domains with general topology that is based on the Hodge decomposition for divergence-free vector fields. Error estimates and corroborating numerical results are presented.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"175 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hodge Decomposition Finite Element Method for the Quad-Curl Problem on Polyhedral Domains\",\"authors\":\"Susanne C. Brenner, Casey Cavanaugh, Li-yeng Sung\",\"doi\":\"10.1007/s10915-024-02626-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We design a finite element method for the quad-curl problem on three dimensional Lipschitz polyhedral domains with general topology that is based on the Hodge decomposition for divergence-free vector fields. Error estimates and corroborating numerical results are presented.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"175 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02626-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02626-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们为具有一般拓扑结构的三维 Lipschitz 多面体域上的 quad-curl 问题设计了一种有限元方法,该方法基于无发散向量场的霍奇分解。文中给出了误差估计和确证的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Hodge Decomposition Finite Element Method for the Quad-Curl Problem on Polyhedral Domains

A Hodge Decomposition Finite Element Method for the Quad-Curl Problem on Polyhedral Domains

We design a finite element method for the quad-curl problem on three dimensional Lipschitz polyhedral domains with general topology that is based on the Hodge decomposition for divergence-free vector fields. Error estimates and corroborating numerical results are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信