Zhengfeng Jiang, Chen He, Fei Gao, Quan Shi, Yang Chen, Haimeng Yu, Zhimao Zhou and Ruoxin Wang
{"title":"磺化生物炭衍生有机物的分子特征","authors":"Zhengfeng Jiang, Chen He, Fei Gao, Quan Shi, Yang Chen, Haimeng Yu, Zhimao Zhou and Ruoxin Wang","doi":"10.1039/D4EM00233D","DOIUrl":null,"url":null,"abstract":"<p >Sulfonated biochar (SBC), as a functional carbon-based material, has attracted widespread attention due to its excellent adsorption properties. The composition of biochar-derived organic matter (B-DOM) is a key factor influencing the migration and transformation of soil elements and pollutants. However, molecular characteristics of sulfonated biochar-derived organic matter (SBC-DOM) are still unclear. In this study, the molecular composition of derived organic matter (DOM) from SBC prepared <em>via</em> one-step carbonization-sulfonation techniques was investigated by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and then compared with those of DOMs from rice husk (RH), pyrochar (PYC), and hydrochar (HYC). The results show that the CHOS- and CHONS-containing formulae are predominant in SBC-DOM, accounting for 85% of the total molecular formula number, while DOMs from RH, PYC, and HYC are dominated by CHO-containing formulae. Compared to PYC-DOM and HYC-DOM, SBC-DOM has more unsaturated aliphatic compounds, which make it more labile and easily biodegraded. Additionally, SBC-DOM has higher O/C, (N + O)/C ratios and sulfur-containing compounds. These findings provide a theoretical basis for further research on the application of sulfonated biochar in soil improvement and remediation.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 9","pages":" 1641-1650"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular characteristics of organic matter derived from sulfonated biochar†\",\"authors\":\"Zhengfeng Jiang, Chen He, Fei Gao, Quan Shi, Yang Chen, Haimeng Yu, Zhimao Zhou and Ruoxin Wang\",\"doi\":\"10.1039/D4EM00233D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sulfonated biochar (SBC), as a functional carbon-based material, has attracted widespread attention due to its excellent adsorption properties. The composition of biochar-derived organic matter (B-DOM) is a key factor influencing the migration and transformation of soil elements and pollutants. However, molecular characteristics of sulfonated biochar-derived organic matter (SBC-DOM) are still unclear. In this study, the molecular composition of derived organic matter (DOM) from SBC prepared <em>via</em> one-step carbonization-sulfonation techniques was investigated by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and then compared with those of DOMs from rice husk (RH), pyrochar (PYC), and hydrochar (HYC). The results show that the CHOS- and CHONS-containing formulae are predominant in SBC-DOM, accounting for 85% of the total molecular formula number, while DOMs from RH, PYC, and HYC are dominated by CHO-containing formulae. Compared to PYC-DOM and HYC-DOM, SBC-DOM has more unsaturated aliphatic compounds, which make it more labile and easily biodegraded. Additionally, SBC-DOM has higher O/C, (N + O)/C ratios and sulfur-containing compounds. These findings provide a theoretical basis for further research on the application of sulfonated biochar in soil improvement and remediation.</p>\",\"PeriodicalId\":74,\"journal\":{\"name\":\"Environmental Science: Processes & Impacts\",\"volume\":\" 9\",\"pages\":\" 1641-1650\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Processes & Impacts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00233d\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00233d","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
磺化生物炭(SBC)作为一种功能性碳基材料,因其卓越的吸附特性而受到广泛关注。生物炭衍生有机物(B-DOM)的组成是影响土壤元素和污染物迁移和转化的关键因素。然而,磺化生物炭衍生有机质(SBC-DOM)的分子特征尚不清楚。本研究采用傅立叶变换离子回旋共振质谱法(FT-ICR-MS)研究了通过一步碳化-磺化技术制备的 SBC 衍生有机物(DOM)的分子组成,并将其与稻壳(RH)、焦炭(PYC)和水炭(HYC)的 DOM 进行了比较。结果表明,SBC-DOM 中以含 CHOS 和 CHONS 的分子式为主,占总分子式数的 85%,而 RH、PYC 和 HYC 的 DOM 则以含 CHO 的分子式为主。与PYC-DOM和HYC-DOM相比,SBC-DOM含有更多的不饱和脂肪族化合物,这使其更加易变和易于生物降解。此外,SBC-DOM 具有更高的 O/C、(N+O)/C 比率和含硫化合物。这些发现为进一步研究磺化生物炭在土壤改良和修复中的应用提供了理论依据。
Molecular characteristics of organic matter derived from sulfonated biochar†
Sulfonated biochar (SBC), as a functional carbon-based material, has attracted widespread attention due to its excellent adsorption properties. The composition of biochar-derived organic matter (B-DOM) is a key factor influencing the migration and transformation of soil elements and pollutants. However, molecular characteristics of sulfonated biochar-derived organic matter (SBC-DOM) are still unclear. In this study, the molecular composition of derived organic matter (DOM) from SBC prepared via one-step carbonization-sulfonation techniques was investigated by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and then compared with those of DOMs from rice husk (RH), pyrochar (PYC), and hydrochar (HYC). The results show that the CHOS- and CHONS-containing formulae are predominant in SBC-DOM, accounting for 85% of the total molecular formula number, while DOMs from RH, PYC, and HYC are dominated by CHO-containing formulae. Compared to PYC-DOM and HYC-DOM, SBC-DOM has more unsaturated aliphatic compounds, which make it more labile and easily biodegraded. Additionally, SBC-DOM has higher O/C, (N + O)/C ratios and sulfur-containing compounds. These findings provide a theoretical basis for further research on the application of sulfonated biochar in soil improvement and remediation.
期刊介绍:
Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.