支持知识图谱算法的深度推荐系统

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yan Wang, Xiao Feng Ma, Miao Zhu
{"title":"支持知识图谱算法的深度推荐系统","authors":"Yan Wang, Xiao Feng Ma, Miao Zhu","doi":"10.7717/peerj-cs.2010","DOIUrl":null,"url":null,"abstract":"Personalized learning resource recommendations may help resolve the difficulties of online education that include learning mazes and information overload. However, existing personalized learning resource recommendation algorithms have shortcomings such as low accuracy and low efficiency. This study proposes a deep recommendation system algorithm based on a knowledge graph (D-KGR) that includes four data processing units. These units are the recommendation unit (RS unit), the knowledge graph feature representation unit (KGE unit), the cross compression unit (CC unit), and the feature extraction unit (FE unit). This model integrates technologies including the knowledge graph, deep learning, neural network, and data mining. It introduces cross compression in the feature learning process of the knowledge graph and predicts user attributes. Multimodal technology is used to optimize the process of project attribute processing; text type attributes, multivalued type attributes, and other type attributes are processed separately to reconstruct the knowledge graph. A convolutional neural network algorithm is introduced in the reconstruction process to optimize the data feature qualities. Experimental analysis was conducted from two aspects of algorithm efficiency and accuracy, and the particle swarm optimization, neural network, and knowledge graph algorithms were compared. Several tests showed that the deep recommendation system algorithm had obvious advantages when the number of learning resources and users exceeded 1,000. It has the ability to integrate systems such as the particle swarm optimization iterative classification, neural network intelligent simulation, and low resource consumption. It can quickly process massive amounts of information data, reduce algorithm complexity and requires less time and had lower costs. Our algorithm also has better efficiency and accuracy.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A knowledge graph algorithm enabled deep recommendation system\",\"authors\":\"Yan Wang, Xiao Feng Ma, Miao Zhu\",\"doi\":\"10.7717/peerj-cs.2010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personalized learning resource recommendations may help resolve the difficulties of online education that include learning mazes and information overload. However, existing personalized learning resource recommendation algorithms have shortcomings such as low accuracy and low efficiency. This study proposes a deep recommendation system algorithm based on a knowledge graph (D-KGR) that includes four data processing units. These units are the recommendation unit (RS unit), the knowledge graph feature representation unit (KGE unit), the cross compression unit (CC unit), and the feature extraction unit (FE unit). This model integrates technologies including the knowledge graph, deep learning, neural network, and data mining. It introduces cross compression in the feature learning process of the knowledge graph and predicts user attributes. Multimodal technology is used to optimize the process of project attribute processing; text type attributes, multivalued type attributes, and other type attributes are processed separately to reconstruct the knowledge graph. A convolutional neural network algorithm is introduced in the reconstruction process to optimize the data feature qualities. Experimental analysis was conducted from two aspects of algorithm efficiency and accuracy, and the particle swarm optimization, neural network, and knowledge graph algorithms were compared. Several tests showed that the deep recommendation system algorithm had obvious advantages when the number of learning resources and users exceeded 1,000. It has the ability to integrate systems such as the particle swarm optimization iterative classification, neural network intelligent simulation, and low resource consumption. It can quickly process massive amounts of information data, reduce algorithm complexity and requires less time and had lower costs. Our algorithm also has better efficiency and accuracy.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2010\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2010","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

个性化学习资源推荐有助于解决在线教育中的学习迷宫和信息过载等难题。然而,现有的个性化学习资源推荐算法存在准确率低、效率低等缺点。本研究提出了一种基于知识图谱(D-KGR)的深度推荐系统算法,包括四个数据处理单元。这些单元分别是推荐单元(RS 单元)、知识图谱特征表示单元(KGE 单元)、交叉压缩单元(CC 单元)和特征提取单元(FE 单元)。该模型集成了知识图谱、深度学习、神经网络和数据挖掘等技术。它在知识图谱的特征学习过程中引入了交叉压缩,并预测用户属性。采用多模态技术优化项目属性处理流程,分别处理文本类型属性、多值类型属性和其他类型属性,重构知识图谱。在重构过程中引入了卷积神经网络算法,以优化数据特征质量。实验分析从算法效率和准确性两个方面对粒子群优化算法、神经网络算法和知识图谱算法进行了比较。多项测试表明,当学习资源和用户数量超过 1000 个时,深度推荐系统算法优势明显。它具有粒子群优化迭代分类、神经网络智能模拟等系统集成能力,资源消耗低。它能快速处理海量信息数据,降低算法复杂度,所需时间更短,成本更低。我们的算法还具有更高的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A knowledge graph algorithm enabled deep recommendation system
Personalized learning resource recommendations may help resolve the difficulties of online education that include learning mazes and information overload. However, existing personalized learning resource recommendation algorithms have shortcomings such as low accuracy and low efficiency. This study proposes a deep recommendation system algorithm based on a knowledge graph (D-KGR) that includes four data processing units. These units are the recommendation unit (RS unit), the knowledge graph feature representation unit (KGE unit), the cross compression unit (CC unit), and the feature extraction unit (FE unit). This model integrates technologies including the knowledge graph, deep learning, neural network, and data mining. It introduces cross compression in the feature learning process of the knowledge graph and predicts user attributes. Multimodal technology is used to optimize the process of project attribute processing; text type attributes, multivalued type attributes, and other type attributes are processed separately to reconstruct the knowledge graph. A convolutional neural network algorithm is introduced in the reconstruction process to optimize the data feature qualities. Experimental analysis was conducted from two aspects of algorithm efficiency and accuracy, and the particle swarm optimization, neural network, and knowledge graph algorithms were compared. Several tests showed that the deep recommendation system algorithm had obvious advantages when the number of learning resources and users exceeded 1,000. It has the ability to integrate systems such as the particle swarm optimization iterative classification, neural network intelligent simulation, and low resource consumption. It can quickly process massive amounts of information data, reduce algorithm complexity and requires less time and had lower costs. Our algorithm also has better efficiency and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信