Gemma Turon, Edwin Tse, Xin Qiu, Matthew Todd, Miquel Duran-Frigola
{"title":"开放源代码对全球健康的贡献:抗疟药物发现案例","authors":"Gemma Turon, Edwin Tse, Xin Qiu, Matthew Todd, Miquel Duran-Frigola","doi":"10.1021/acsmedchemlett.4c00131","DOIUrl":null,"url":null,"abstract":"The discovery of treatments for infectious diseases that affect the poorest countries has been stagnant for decades. As long as expected returns on investment remain low, pharmaceutical companies’ lack of interest in this disease area must be compensated for with collaborative efforts from the public sector. New approaches to drug discovery, inspired by the “open source” philosophy prevalent in software development, offer a platform for experts from diverse backgrounds to contribute their skills, enhancing reproducibility, progress tracking, and public discussion. Here, we present the first efforts of Ersilia, an initiative focused on attracting data scientists into contributing to global health, toward meeting the goals of Open Source Malaria, a consortium of medicinal chemists investigating antimalarial compounds using a purely open science approach. We showcase the chemical space exploration of a set of triazolopyrazine compounds with potent antiplasmodial activity and discuss how open source practices can serve as a common ground to make drug discovery more inclusive and participative.","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"74 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open Source Code Contributions to Global Health: The Case of Antimalarial Drug Discovery\",\"authors\":\"Gemma Turon, Edwin Tse, Xin Qiu, Matthew Todd, Miquel Duran-Frigola\",\"doi\":\"10.1021/acsmedchemlett.4c00131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of treatments for infectious diseases that affect the poorest countries has been stagnant for decades. As long as expected returns on investment remain low, pharmaceutical companies’ lack of interest in this disease area must be compensated for with collaborative efforts from the public sector. New approaches to drug discovery, inspired by the “open source” philosophy prevalent in software development, offer a platform for experts from diverse backgrounds to contribute their skills, enhancing reproducibility, progress tracking, and public discussion. Here, we present the first efforts of Ersilia, an initiative focused on attracting data scientists into contributing to global health, toward meeting the goals of Open Source Malaria, a consortium of medicinal chemists investigating antimalarial compounds using a purely open science approach. We showcase the chemical space exploration of a set of triazolopyrazine compounds with potent antiplasmodial activity and discuss how open source practices can serve as a common ground to make drug discovery more inclusive and participative.\",\"PeriodicalId\":20,\"journal\":{\"name\":\"ACS Medicinal Chemistry Letters\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Medicinal Chemistry Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmedchemlett.4c00131\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsmedchemlett.4c00131","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Open Source Code Contributions to Global Health: The Case of Antimalarial Drug Discovery
The discovery of treatments for infectious diseases that affect the poorest countries has been stagnant for decades. As long as expected returns on investment remain low, pharmaceutical companies’ lack of interest in this disease area must be compensated for with collaborative efforts from the public sector. New approaches to drug discovery, inspired by the “open source” philosophy prevalent in software development, offer a platform for experts from diverse backgrounds to contribute their skills, enhancing reproducibility, progress tracking, and public discussion. Here, we present the first efforts of Ersilia, an initiative focused on attracting data scientists into contributing to global health, toward meeting the goals of Open Source Malaria, a consortium of medicinal chemists investigating antimalarial compounds using a purely open science approach. We showcase the chemical space exploration of a set of triazolopyrazine compounds with potent antiplasmodial activity and discuss how open source practices can serve as a common ground to make drug discovery more inclusive and participative.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.