开放源代码对全球健康的贡献:抗疟药物发现案例

IF 4 3区 医学 Q2 CHEMISTRY, MEDICINAL
Gemma Turon, Edwin Tse, Xin Qiu, Matthew Todd, Miquel Duran-Frigola
{"title":"开放源代码对全球健康的贡献:抗疟药物发现案例","authors":"Gemma Turon, Edwin Tse, Xin Qiu, Matthew Todd, Miquel Duran-Frigola","doi":"10.1021/acsmedchemlett.4c00131","DOIUrl":null,"url":null,"abstract":"The discovery of treatments for infectious diseases that affect the poorest countries has been stagnant for decades. As long as expected returns on investment remain low, pharmaceutical companies’ lack of interest in this disease area must be compensated for with collaborative efforts from the public sector. New approaches to drug discovery, inspired by the “open source” philosophy prevalent in software development, offer a platform for experts from diverse backgrounds to contribute their skills, enhancing reproducibility, progress tracking, and public discussion. Here, we present the first efforts of Ersilia, an initiative focused on attracting data scientists into contributing to global health, toward meeting the goals of Open Source Malaria, a consortium of medicinal chemists investigating antimalarial compounds using a purely open science approach. We showcase the chemical space exploration of a set of triazolopyrazine compounds with potent antiplasmodial activity and discuss how open source practices can serve as a common ground to make drug discovery more inclusive and participative.","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"74 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open Source Code Contributions to Global Health: The Case of Antimalarial Drug Discovery\",\"authors\":\"Gemma Turon, Edwin Tse, Xin Qiu, Matthew Todd, Miquel Duran-Frigola\",\"doi\":\"10.1021/acsmedchemlett.4c00131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of treatments for infectious diseases that affect the poorest countries has been stagnant for decades. As long as expected returns on investment remain low, pharmaceutical companies’ lack of interest in this disease area must be compensated for with collaborative efforts from the public sector. New approaches to drug discovery, inspired by the “open source” philosophy prevalent in software development, offer a platform for experts from diverse backgrounds to contribute their skills, enhancing reproducibility, progress tracking, and public discussion. Here, we present the first efforts of Ersilia, an initiative focused on attracting data scientists into contributing to global health, toward meeting the goals of Open Source Malaria, a consortium of medicinal chemists investigating antimalarial compounds using a purely open science approach. We showcase the chemical space exploration of a set of triazolopyrazine compounds with potent antiplasmodial activity and discuss how open source practices can serve as a common ground to make drug discovery more inclusive and participative.\",\"PeriodicalId\":20,\"journal\":{\"name\":\"ACS Medicinal Chemistry Letters\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Medicinal Chemistry Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmedchemlett.4c00131\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsmedchemlett.4c00131","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,对影响最贫穷国家的传染病的治疗一直停滞不前。只要投资的预期回报仍然很低,就必须通过公共部门的合作来弥补制药公司对这一疾病领域缺乏兴趣的问题。受软件开发中盛行的 "开源 "理念的启发,新的药物发现方法为来自不同背景的专家提供了一个贡献技能的平台,提高了可重复性、进度跟踪和公共讨论。在这里,我们将介绍 Ersilia(一项致力于吸引数据科学家为全球健康做出贡献的倡议)为实现开源疟疾(一个采用纯粹开放科学方法研究抗疟疾化合物的药物化学家联盟)的目标所做的初步努力。我们展示了一组具有强效抗疟活性的三唑并吡嗪化合物的化学空间探索,并讨论了开源实践如何成为使药物发现更具包容性和参与性的共同基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Open Source Code Contributions to Global Health: The Case of Antimalarial Drug Discovery

Open Source Code Contributions to Global Health: The Case of Antimalarial Drug Discovery
The discovery of treatments for infectious diseases that affect the poorest countries has been stagnant for decades. As long as expected returns on investment remain low, pharmaceutical companies’ lack of interest in this disease area must be compensated for with collaborative efforts from the public sector. New approaches to drug discovery, inspired by the “open source” philosophy prevalent in software development, offer a platform for experts from diverse backgrounds to contribute their skills, enhancing reproducibility, progress tracking, and public discussion. Here, we present the first efforts of Ersilia, an initiative focused on attracting data scientists into contributing to global health, toward meeting the goals of Open Source Malaria, a consortium of medicinal chemists investigating antimalarial compounds using a purely open science approach. We showcase the chemical space exploration of a set of triazolopyrazine compounds with potent antiplasmodial activity and discuss how open source practices can serve as a common ground to make drug discovery more inclusive and participative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Medicinal Chemistry Letters
ACS Medicinal Chemistry Letters CHEMISTRY, MEDICINAL-
CiteScore
7.30
自引率
2.40%
发文量
328
审稿时长
1 months
期刊介绍: ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to: Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics) Biological characterization of new molecular entities in the context of drug discovery Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc. Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic Mechanistic drug metabolism and regulation of metabolic enzyme gene expression Chemistry patents relevant to the medicinal chemistry field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信