{"title":"通过移位 0 阿芬代数的类等价物","authors":"You-Hung Hsu","doi":"10.1007/s10468-024-10279-5","DOIUrl":null,"url":null,"abstract":"<div><p>We show that a categorical action of shifted 0-affine algebra naturally gives two families of pairs of complementary idempotents in the triangulated monoidal category of triangulated endofunctors for each weight category. Consequently, we obtain two families of pairs of complementary idempotents in the triangulated monoidal category <span>\\({\\textrm{D}}^b\\textrm{Coh}(G/P \\times G/P)\\)</span>. As an application, this provides examples where the projection functors of a semiorthogonal decomposition are kernel functors, and we determine the generators of the component categories in the Grassmannians case.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Categorical Idempotents Via Shifted 0-Affine Algebras\",\"authors\":\"You-Hung Hsu\",\"doi\":\"10.1007/s10468-024-10279-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that a categorical action of shifted 0-affine algebra naturally gives two families of pairs of complementary idempotents in the triangulated monoidal category of triangulated endofunctors for each weight category. Consequently, we obtain two families of pairs of complementary idempotents in the triangulated monoidal category <span>\\\\({\\\\textrm{D}}^b\\\\textrm{Coh}(G/P \\\\times G/P)\\\\)</span>. As an application, this provides examples where the projection functors of a semiorthogonal decomposition are kernel functors, and we determine the generators of the component categories in the Grassmannians case.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10279-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10279-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Categorical Idempotents Via Shifted 0-Affine Algebras
We show that a categorical action of shifted 0-affine algebra naturally gives two families of pairs of complementary idempotents in the triangulated monoidal category of triangulated endofunctors for each weight category. Consequently, we obtain two families of pairs of complementary idempotents in the triangulated monoidal category \({\textrm{D}}^b\textrm{Coh}(G/P \times G/P)\). As an application, this provides examples where the projection functors of a semiorthogonal decomposition are kernel functors, and we determine the generators of the component categories in the Grassmannians case.