{"title":"通过移位 0 阿芬代数的类等价物","authors":"You-Hung Hsu","doi":"10.1007/s10468-024-10279-5","DOIUrl":null,"url":null,"abstract":"<div><p>We show that a categorical action of shifted 0-affine algebra naturally gives two families of pairs of complementary idempotents in the triangulated monoidal category of triangulated endofunctors for each weight category. Consequently, we obtain two families of pairs of complementary idempotents in the triangulated monoidal category <span>\\({\\textrm{D}}^b\\textrm{Coh}(G/P \\times G/P)\\)</span>. As an application, this provides examples where the projection functors of a semiorthogonal decomposition are kernel functors, and we determine the generators of the component categories in the Grassmannians case.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 4","pages":"1735 - 1772"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Categorical Idempotents Via Shifted 0-Affine Algebras\",\"authors\":\"You-Hung Hsu\",\"doi\":\"10.1007/s10468-024-10279-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that a categorical action of shifted 0-affine algebra naturally gives two families of pairs of complementary idempotents in the triangulated monoidal category of triangulated endofunctors for each weight category. Consequently, we obtain two families of pairs of complementary idempotents in the triangulated monoidal category <span>\\\\({\\\\textrm{D}}^b\\\\textrm{Coh}(G/P \\\\times G/P)\\\\)</span>. As an application, this provides examples where the projection functors of a semiorthogonal decomposition are kernel functors, and we determine the generators of the component categories in the Grassmannians case.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 4\",\"pages\":\"1735 - 1772\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10279-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10279-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Categorical Idempotents Via Shifted 0-Affine Algebras
We show that a categorical action of shifted 0-affine algebra naturally gives two families of pairs of complementary idempotents in the triangulated monoidal category of triangulated endofunctors for each weight category. Consequently, we obtain two families of pairs of complementary idempotents in the triangulated monoidal category \({\textrm{D}}^b\textrm{Coh}(G/P \times G/P)\). As an application, this provides examples where the projection functors of a semiorthogonal decomposition are kernel functors, and we determine the generators of the component categories in the Grassmannians case.
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.