Philippe Hensel, Donald R. Cahoon, Glenn Guntenspergen, Laura Mitchell, Matt Whitbeck, Galen Scott
{"title":"在湿地地表高程变化分析中纳入陆地垂直运动测量数据","authors":"Philippe Hensel, Donald R. Cahoon, Glenn Guntenspergen, Laura Mitchell, Matt Whitbeck, Galen Scott","doi":"10.1007/s12237-024-01406-y","DOIUrl":null,"url":null,"abstract":"<p>We compared elevation trajectories from 14 rod surface elevation table (RSET) stations and 60 real-time kinematic (RTK) global positioning system (GPS) transects within the Blackwater National Wildlife Refuge (BNWR) from 2010–2013. The results were similar, 7.3 ± 0.9 (mean ± standard error; RSET) versus 6.2 ± 0.6 mm year<sup>−1</sup> (RTK) (<i>P</i> = 0.216), and were greater than relative sea level rise (RSLR) computed at the nearest long-term tide station (3.9 ± 0.29 mm year<sup>−1</sup>). Despite having shown elevation gain, these wetlands continue to drown and convert to open water. Episodic, multi-day GPS measurements on geodetic control marks at BNWR between 2005 and 2023 revealed a substantial vertical land motion (VLM) signal. From 2005 to 2015, three reference marks used to control the 2010–2013 RTK study lost on average 6.0 ± 0.7 mm year<sup>−1</sup>, corresponding to 80% and 94% of the elevation gain measured by the RSET and RTK techniques, respectively. The longer 18-year subsidence trend measured on one of these marks was lower, 3.9 ± 0.7 mm year<sup>−1</sup>, highlighting important interannual variability. Wetland elevation change measurements need to account for VLM occurring below the reference marks used to measure elevation change. Estimates from the nearest long-term tide station may not be applicable to the wetland if the tide station is in a different geological setting. At BNWR, VLM was higher than the VLM at the Cambridge tide station, which helps explain why wetlands at BNWR are not keeping pace with RSLR despite the measured high rates of elevation gain.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating Measurements of Vertical Land Motion in Wetland Surface Elevation Change Analyses\",\"authors\":\"Philippe Hensel, Donald R. Cahoon, Glenn Guntenspergen, Laura Mitchell, Matt Whitbeck, Galen Scott\",\"doi\":\"10.1007/s12237-024-01406-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We compared elevation trajectories from 14 rod surface elevation table (RSET) stations and 60 real-time kinematic (RTK) global positioning system (GPS) transects within the Blackwater National Wildlife Refuge (BNWR) from 2010–2013. The results were similar, 7.3 ± 0.9 (mean ± standard error; RSET) versus 6.2 ± 0.6 mm year<sup>−1</sup> (RTK) (<i>P</i> = 0.216), and were greater than relative sea level rise (RSLR) computed at the nearest long-term tide station (3.9 ± 0.29 mm year<sup>−1</sup>). Despite having shown elevation gain, these wetlands continue to drown and convert to open water. Episodic, multi-day GPS measurements on geodetic control marks at BNWR between 2005 and 2023 revealed a substantial vertical land motion (VLM) signal. From 2005 to 2015, three reference marks used to control the 2010–2013 RTK study lost on average 6.0 ± 0.7 mm year<sup>−1</sup>, corresponding to 80% and 94% of the elevation gain measured by the RSET and RTK techniques, respectively. The longer 18-year subsidence trend measured on one of these marks was lower, 3.9 ± 0.7 mm year<sup>−1</sup>, highlighting important interannual variability. Wetland elevation change measurements need to account for VLM occurring below the reference marks used to measure elevation change. Estimates from the nearest long-term tide station may not be applicable to the wetland if the tide station is in a different geological setting. At BNWR, VLM was higher than the VLM at the Cambridge tide station, which helps explain why wetlands at BNWR are not keeping pace with RSLR despite the measured high rates of elevation gain.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12237-024-01406-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-024-01406-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Incorporating Measurements of Vertical Land Motion in Wetland Surface Elevation Change Analyses
We compared elevation trajectories from 14 rod surface elevation table (RSET) stations and 60 real-time kinematic (RTK) global positioning system (GPS) transects within the Blackwater National Wildlife Refuge (BNWR) from 2010–2013. The results were similar, 7.3 ± 0.9 (mean ± standard error; RSET) versus 6.2 ± 0.6 mm year−1 (RTK) (P = 0.216), and were greater than relative sea level rise (RSLR) computed at the nearest long-term tide station (3.9 ± 0.29 mm year−1). Despite having shown elevation gain, these wetlands continue to drown and convert to open water. Episodic, multi-day GPS measurements on geodetic control marks at BNWR between 2005 and 2023 revealed a substantial vertical land motion (VLM) signal. From 2005 to 2015, three reference marks used to control the 2010–2013 RTK study lost on average 6.0 ± 0.7 mm year−1, corresponding to 80% and 94% of the elevation gain measured by the RSET and RTK techniques, respectively. The longer 18-year subsidence trend measured on one of these marks was lower, 3.9 ± 0.7 mm year−1, highlighting important interannual variability. Wetland elevation change measurements need to account for VLM occurring below the reference marks used to measure elevation change. Estimates from the nearest long-term tide station may not be applicable to the wetland if the tide station is in a different geological setting. At BNWR, VLM was higher than the VLM at the Cambridge tide station, which helps explain why wetlands at BNWR are not keeping pace with RSLR despite the measured high rates of elevation gain.