Kanat Chanthongdee, Yerko Fuentealba, Thor Wahlestedt, Lou Foulhac, Tetiana Kardash, Andrea Coppola, Markus Heilig, Estelle Barbier
{"title":"前沿 | 利用 DeepLabCut 和 SimBA 机器学习模型对大鼠的恐惧表达进行综合伦理学分析","authors":"Kanat Chanthongdee, Yerko Fuentealba, Thor Wahlestedt, Lou Foulhac, Tetiana Kardash, Andrea Coppola, Markus Heilig, Estelle Barbier","doi":"10.3389/fnbeh.2024.1440601","DOIUrl":null,"url":null,"abstract":"IntroductionDefensive responses to threat-associated cues are commonly evaluated using conditioned freezing or suppression of operant responding. However, rats display a broad range of behaviors and shift their defensive behaviors based on immediacy of threats and context. This study aimed to systematically quantify the defensive behaviors that are triggered in response to threat-associated cues and assess whether they can accurately be identified using DeepLabCut in conjunction with SimBA.MethodsWe evaluated behavioral responses to fear using the auditory fear conditioning paradigm. Observable behaviors triggered by threat-associated cues were manually scored using Ethovision XT. Subsequently, we investigated the effects of diazepam (0, 0.3, or 1 mg/kg), administered intraperitoneally before fear memory testing, to assess its anxiolytic impact on these behaviors. We then developed a DeepLabCut + SimBA workflow for ethological analysis employing a series of machine learning models. The accuracy of behavior classifications generated by this pipeline was evaluated by comparing its output scores to the manually annotated scores.ResultsOur findings show that, besides conditioned suppression and freezing, rats exhibit heightened risk assessment behaviors, including sniffing, rearing, free-air whisking, and head scanning. We observed that diazepam dose-dependently mitigates these risk-assessment behaviors in both sexes, suggesting a good predictive validity of our readouts. With adequate amount of training data (approximately > 30,000 frames containing such behavior), DeepLabCut + SimBA workflow yields high accuracy with a reasonable transferability to classify well-represented behaviors in a different experimental condition. We also found that maintaining the same condition between training and evaluation data sets is recommended while developing DeepLabCut + SimBA workflow to achieve the highest accuracy.DiscussionOur findings suggest that an ethological analysis can be used to assess fear learning. With the application of DeepLabCut and SimBA, this approach provides an alternative method to decode ongoing defensive behaviors in both male and female rats for further investigation of fear-related neurobiological underpinnings.","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"36 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frontiers | Comprehensive ethological analysis of fear expression in rats using DeepLabCut and SimBA machine learning model\",\"authors\":\"Kanat Chanthongdee, Yerko Fuentealba, Thor Wahlestedt, Lou Foulhac, Tetiana Kardash, Andrea Coppola, Markus Heilig, Estelle Barbier\",\"doi\":\"10.3389/fnbeh.2024.1440601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IntroductionDefensive responses to threat-associated cues are commonly evaluated using conditioned freezing or suppression of operant responding. However, rats display a broad range of behaviors and shift their defensive behaviors based on immediacy of threats and context. This study aimed to systematically quantify the defensive behaviors that are triggered in response to threat-associated cues and assess whether they can accurately be identified using DeepLabCut in conjunction with SimBA.MethodsWe evaluated behavioral responses to fear using the auditory fear conditioning paradigm. Observable behaviors triggered by threat-associated cues were manually scored using Ethovision XT. Subsequently, we investigated the effects of diazepam (0, 0.3, or 1 mg/kg), administered intraperitoneally before fear memory testing, to assess its anxiolytic impact on these behaviors. We then developed a DeepLabCut + SimBA workflow for ethological analysis employing a series of machine learning models. The accuracy of behavior classifications generated by this pipeline was evaluated by comparing its output scores to the manually annotated scores.ResultsOur findings show that, besides conditioned suppression and freezing, rats exhibit heightened risk assessment behaviors, including sniffing, rearing, free-air whisking, and head scanning. We observed that diazepam dose-dependently mitigates these risk-assessment behaviors in both sexes, suggesting a good predictive validity of our readouts. With adequate amount of training data (approximately > 30,000 frames containing such behavior), DeepLabCut + SimBA workflow yields high accuracy with a reasonable transferability to classify well-represented behaviors in a different experimental condition. We also found that maintaining the same condition between training and evaluation data sets is recommended while developing DeepLabCut + SimBA workflow to achieve the highest accuracy.DiscussionOur findings suggest that an ethological analysis can be used to assess fear learning. With the application of DeepLabCut and SimBA, this approach provides an alternative method to decode ongoing defensive behaviors in both male and female rats for further investigation of fear-related neurobiological underpinnings.\",\"PeriodicalId\":12368,\"journal\":{\"name\":\"Frontiers in Behavioral Neuroscience\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Behavioral Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbeh.2024.1440601\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Behavioral Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnbeh.2024.1440601","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Frontiers | Comprehensive ethological analysis of fear expression in rats using DeepLabCut and SimBA machine learning model
IntroductionDefensive responses to threat-associated cues are commonly evaluated using conditioned freezing or suppression of operant responding. However, rats display a broad range of behaviors and shift their defensive behaviors based on immediacy of threats and context. This study aimed to systematically quantify the defensive behaviors that are triggered in response to threat-associated cues and assess whether they can accurately be identified using DeepLabCut in conjunction with SimBA.MethodsWe evaluated behavioral responses to fear using the auditory fear conditioning paradigm. Observable behaviors triggered by threat-associated cues were manually scored using Ethovision XT. Subsequently, we investigated the effects of diazepam (0, 0.3, or 1 mg/kg), administered intraperitoneally before fear memory testing, to assess its anxiolytic impact on these behaviors. We then developed a DeepLabCut + SimBA workflow for ethological analysis employing a series of machine learning models. The accuracy of behavior classifications generated by this pipeline was evaluated by comparing its output scores to the manually annotated scores.ResultsOur findings show that, besides conditioned suppression and freezing, rats exhibit heightened risk assessment behaviors, including sniffing, rearing, free-air whisking, and head scanning. We observed that diazepam dose-dependently mitigates these risk-assessment behaviors in both sexes, suggesting a good predictive validity of our readouts. With adequate amount of training data (approximately > 30,000 frames containing such behavior), DeepLabCut + SimBA workflow yields high accuracy with a reasonable transferability to classify well-represented behaviors in a different experimental condition. We also found that maintaining the same condition between training and evaluation data sets is recommended while developing DeepLabCut + SimBA workflow to achieve the highest accuracy.DiscussionOur findings suggest that an ethological analysis can be used to assess fear learning. With the application of DeepLabCut and SimBA, this approach provides an alternative method to decode ongoing defensive behaviors in both male and female rats for further investigation of fear-related neurobiological underpinnings.
期刊介绍:
Frontiers in Behavioral Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the neural mechanisms underlying behavior. Field Chief Editor Nuno Sousa at the Instituto de Pesquisa em Ciências da Vida e da Saúde (ICVS) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
This journal publishes major insights into the neural mechanisms of animal and human behavior, and welcomes articles studying the interplay between behavior and its neurobiological basis at all levels: from molecular biology and genetics, to morphological, biochemical, neurochemical, electrophysiological, neuroendocrine, pharmacological, and neuroimaging studies.