{"title":"具有几乎多项式增长的导数的列半简单代数和 PI 代数品种","authors":"Sebastiano Argenti","doi":"10.1090/proc/16896","DOIUrl":null,"url":null,"abstract":"<p>We consider associative algebras with an action by derivations by some finite dimensional and semisimple Lie algebra. We prove that if a differential variety has almost polynomial growth, then it is generated by one of the algebras <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U upper T 2 left-parenthesis upper W Subscript lamda Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:msub> <mml:mi>T</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>λ</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">UT_2(W_\\lambda )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E n d left-parenthesis upper W Subscript mu Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> <mml:mi>d</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">End(W_\\mu )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for some integral dominant weight <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda comma mu\"> <mml:semantics> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>μ</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\lambda ,\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu not-equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mo>≠</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mu \\neq 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the special case <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L equals German s German l Subscript 2\"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"fraktur\">s</mml:mi> <mml:mi mathvariant=\"fraktur\">l</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L=\\mathfrak {sl}_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we prove that this is a sufficient condition too.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"214 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lie semisimple algebras of derivations and varieties of PI-algebras with almost polynomial growth\",\"authors\":\"Sebastiano Argenti\",\"doi\":\"10.1090/proc/16896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider associative algebras with an action by derivations by some finite dimensional and semisimple Lie algebra. We prove that if a differential variety has almost polynomial growth, then it is generated by one of the algebras <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper U upper T 2 left-parenthesis upper W Subscript lamda Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:msub> <mml:mi>T</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>λ</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">UT_2(W_\\\\lambda )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E n d left-parenthesis upper W Subscript mu Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> <mml:mi>d</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>μ</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">End(W_\\\\mu )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for some integral dominant weight <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda comma mu\\\"> <mml:semantics> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>μ</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda ,\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu not-equals 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mo>≠</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu \\\\neq 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the special case <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L equals German s German l Subscript 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"fraktur\\\">s</mml:mi> <mml:mi mathvariant=\\\"fraktur\\\">l</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">L=\\\\mathfrak {sl}_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we prove that this is a sufficient condition too.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"214 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16896\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16896","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑的是具有某种有限维半简单李代数派生作用的关联代数。我们证明,如果一个微分方程具有几乎多项式的增长,那么它是由 U T 2 ( W λ ) UT_2(W_\lambda)或 E n d ( W μ ) End(W_\mu ) 中的一个代数生成的,对于某个积分主重 λ , μ \lambda ,\mu μ ≠ 0 \mu \neq 0。在 L = s l 2 L=\mathfrak {sl}_2 的特殊情况下,我们证明这也是一个充分条件。
Lie semisimple algebras of derivations and varieties of PI-algebras with almost polynomial growth
We consider associative algebras with an action by derivations by some finite dimensional and semisimple Lie algebra. We prove that if a differential variety has almost polynomial growth, then it is generated by one of the algebras UT2(Wλ)UT_2(W_\lambda ) or End(Wμ)End(W_\mu ) for some integral dominant weight λ,μ\lambda ,\mu with μ≠0\mu \neq 0. In the special case L=sl2L=\mathfrak {sl}_2 we prove that this is a sufficient condition too.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.