Jiaqi Yan, Weiwen Fu, Kuiyi You, Fangfang Zhao, He’an Luo
{"title":"介孔固定化 BiCl3 硅酸作为稳定的路易斯酸催化剂,用于在温和条件下从邻二甲苯与二氧化氮的硝化反应中选择性合成 4-硝基邻二甲苯","authors":"Jiaqi Yan, Weiwen Fu, Kuiyi You, Fangfang Zhao, He’an Luo","doi":"10.1007/s11144-024-02698-8","DOIUrl":null,"url":null,"abstract":"<div><p>A solvent-free, acid-free, and efficient strategy was developed for the selective preparation of 4-nitro-o-xylene (4-NOX) from the catalytic nitration of o-xylene with NO<sub>2</sub> mediated O<sub>2</sub> over BiCl<sub>3</sub> immobilized silicic acid catalyst (BiCl<sub>3</sub>-SA). The results indicated that the Lewis acid BiCl<sub>3</sub>-SA conjoined NO<sub>2</sub>–O<sub>2</sub> as a composite system synergistically promotes o-xylene conversion and 4-NOX selectivity. Under optimal conditions, 52.4% of o-xylene conversion with 68.4% 4-NOX selectivity was obtained at 35 °C. The characterization demonstrated that the highly dispersed metal Bi species form stable chemical bonds with the SA surface, which can effectively inhibit the loss of metal species and generate abundant acid sites. The developed catalyst is not only inexpensive but also has excellent stability and catalytic performance. Furthermore, a plausible mechanism for the catalytic nitration of o-xylene using NO<sub>2</sub> as a nitration agent over BiCl<sub>3</sub>-SA was proposed. This work provides an eco-friendly and practical protocol for improving desirable 4-NOX selectivity and reducing the discharge of acidic wastewater, with potential application prospects.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 6","pages":"3157 - 3173"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoporous BiCl3 immobilized silicic acid as a stabilized Lewis acid catalyst for the selective synthesis of 4-nitro-o-xylene from the nitration of o-xylene with NO2 under mild conditions\",\"authors\":\"Jiaqi Yan, Weiwen Fu, Kuiyi You, Fangfang Zhao, He’an Luo\",\"doi\":\"10.1007/s11144-024-02698-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A solvent-free, acid-free, and efficient strategy was developed for the selective preparation of 4-nitro-o-xylene (4-NOX) from the catalytic nitration of o-xylene with NO<sub>2</sub> mediated O<sub>2</sub> over BiCl<sub>3</sub> immobilized silicic acid catalyst (BiCl<sub>3</sub>-SA). The results indicated that the Lewis acid BiCl<sub>3</sub>-SA conjoined NO<sub>2</sub>–O<sub>2</sub> as a composite system synergistically promotes o-xylene conversion and 4-NOX selectivity. Under optimal conditions, 52.4% of o-xylene conversion with 68.4% 4-NOX selectivity was obtained at 35 °C. The characterization demonstrated that the highly dispersed metal Bi species form stable chemical bonds with the SA surface, which can effectively inhibit the loss of metal species and generate abundant acid sites. The developed catalyst is not only inexpensive but also has excellent stability and catalytic performance. Furthermore, a plausible mechanism for the catalytic nitration of o-xylene using NO<sub>2</sub> as a nitration agent over BiCl<sub>3</sub>-SA was proposed. This work provides an eco-friendly and practical protocol for improving desirable 4-NOX selectivity and reducing the discharge of acidic wastewater, with potential application prospects.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":750,\"journal\":{\"name\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"volume\":\"137 6\",\"pages\":\"3157 - 3173\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11144-024-02698-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02698-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mesoporous BiCl3 immobilized silicic acid as a stabilized Lewis acid catalyst for the selective synthesis of 4-nitro-o-xylene from the nitration of o-xylene with NO2 under mild conditions
A solvent-free, acid-free, and efficient strategy was developed for the selective preparation of 4-nitro-o-xylene (4-NOX) from the catalytic nitration of o-xylene with NO2 mediated O2 over BiCl3 immobilized silicic acid catalyst (BiCl3-SA). The results indicated that the Lewis acid BiCl3-SA conjoined NO2–O2 as a composite system synergistically promotes o-xylene conversion and 4-NOX selectivity. Under optimal conditions, 52.4% of o-xylene conversion with 68.4% 4-NOX selectivity was obtained at 35 °C. The characterization demonstrated that the highly dispersed metal Bi species form stable chemical bonds with the SA surface, which can effectively inhibit the loss of metal species and generate abundant acid sites. The developed catalyst is not only inexpensive but also has excellent stability and catalytic performance. Furthermore, a plausible mechanism for the catalytic nitration of o-xylene using NO2 as a nitration agent over BiCl3-SA was proposed. This work provides an eco-friendly and practical protocol for improving desirable 4-NOX selectivity and reducing the discharge of acidic wastewater, with potential application prospects.
期刊介绍:
Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields:
-kinetics of homogeneous reactions in gas, liquid and solid phase;
-Homogeneous catalysis;
-Heterogeneous catalysis;
-Adsorption in heterogeneous catalysis;
-Transport processes related to reaction kinetics and catalysis;
-Preparation and study of catalysts;
-Reactors and apparatus.
Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.